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Abstract

The paper presents a biometric recognition methodology

based on hand thermal information. We start with a hard-

ware presentation, specially designed for this research in a

form of thermal sensor plate delivering hand thermal maps,

which is a significantly cheaper alternative to thermal cam-

eras. We use a heuristic feature selection technique em-

ploying mutual information (mRMR) and well known space

transformation methods (PCA and its combination with the

LDA) to develop optimal biometric features by selecting

those parts of the hand, which deliver the most discrimi-

nating personal information. Two different classifiers (k-

NN and SVM) are applied and evaluated with a database of

hand thermal maps captured for 50 different individuals in

three sessions: two at the same day (enrollment attempts),

and the third captured a week apart (verification attempt).

We achieved 6.67% of an average equal error rate (EER),

what suggests that temperature distribution of an inner part

of human hand is individual. This may serve as e.g. support-

ing modality of two-modal biometric recognition (merged

with hand geometry or palm print techniques), or may be

a good candidate for hand liveness detection approach, as

hand thermal maps are difficult to be copied and recon-

structed on an artificial object imitating a human hand. To

our best knowledge, this is the first work presenting the use

of a human hand thermal maps as a direct source of biomet-

ric features.

1. Introduction

Thermal imaging is not so common as the usage of visi-

ble light when capturing physical biometric characteristics.

This is caused by a few factors, and the most significant rea-

son still concerns the cost of thermal cameras, being often

out of proportion to the obtained biometric recognition ac-

curacy. However, assuming for a while that the hardware

cost plays a supporting role (or expecting its fast and se-

rious decrease), and thus having no bias related to the ex-

penses, we may spot more gladly at least three areas of

thermal imaging application in biometrics. Firstly, thermal

images may deliver a larger discrepancy between the object

of interest and the background. Hence, it is often combined

with standard biometric methods to optimize the data seg-

mentation. Secondly, the distribution (typically uneven) of

our body temperature is relatively difficult to be copied and

reconstructed on artificial objects imitating authentic bio-

metric characteristics. This allows to enhance the biomet-

ric modalities with liveness testing, which matches the ob-

served temperature distribution with common (or subject-

related) model of body thermal characteristics. Last but not

least, we may use the thermal information as a source of

biometric features. On the one hand, our average body tem-

perature may significantly vary due to illness or easiness

of heat exchange between our tissues and an outside envi-

ronment. On the other hand, the thermal map of our skin

is a consequence of metabolism of tissue cells, individual

anatomy related to the heat accumulation, and – to some

extent – muscle work. Neglecting the latter (we assume in

this work static measurement, not directly preceded by ex-

tensive muscle exercises), the former factors should lead to

individual features, corresponding with the uniqueness of a

given body part physiology.

All the above three areas of thermal imaging applica-

tion are attractive for biometrics, yet the last one, related

to the recognition of the individual through his or her ther-

mal unique features seems to remain an emerging technol-

ogy. We have developed a complete biometric recognition

methodology employing local temperature information of

an inner part of the hand. This paper presents our hard-

ware setup, feature selection and classification methodolo-

gies, and the results that partially satisfy a general curiosity

related to the usefulness of the hand thermal maps in bio-

metrics. The proposed method should not be confused with

hand geometry biometrics that employs hand silhouette, or
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with palm biometrics, which does not use the temperature

information. Thermal biometrics is also significantly differ-

ent from hand vein recognition, as in the latter approach the

vein patterns are captured by using the effect of higher in-

frared light absorption by the hemoglobin when compared

to the absorption of neighboring tissues. We thus intention-

ally do not compare performance results for hand thermal

biometrics with palm or vein recognition, as they all repre-

sent heterogeneous and distant modalities.

2. Related work

Most of the scientific literature devoted to thermal imag-

ing in biometrics focuses on human face, and is much less

populated by works employing information about the tem-

perature of a hand. Typically hand thermal imaging plays a

supporting role in segmentation process in hand geometry

or vein recognition. Wang et al. [4] uses thermal imaging

instead of near infrared light to extract the palm vein pat-

terns, which are then skeletonized and matched with the use

of Hausdorff distance. Similar approach is proposed by Ku-

mar et al. [1], yet these authors define the features as branch

points of the vein skeleton lines, or calculate skeleton line

orientations and locations within local image boxes. The

authors report 3.5% of the false rejection rate at the false

acceptance rate set to 0.01%, obtained for a database of im-

ages collected for 100 individuals. Mekyska et al. [2] pro-

pose a few methods of hand thermal image segmentation,

and promote the image registration technique as the most

accurate among others, based on e.g. active shapes or Fisher

information. Finally, Wang et al. [5] proposes a recognition

method based on geometrical features of the hand silhouette

derived from the hand thermal images. The authors tested

their approach with the database gathering samples for 30

subjects, and report 99% of the correct recognition rate for

nonlinear classification (realized through a neural network).

Despite our best efforts and sincere will to compare our

proposal with similar solutions, we did not find any earlier

work describing extraction and matching of biometric fea-

tures based directly on distribution of a hand temperature.

3. Database of thermal hand images

3.1. Hardware characteristics

We use a plate of temperature sensors as an alternative

to the thermal imaging by a camera, Fig. 1. The upper side

of the plate consists of 1012 thermal sensors arranged in

23 columns and 44 rows separated by 5 mm distance. Ev-

ery second row is shifted by half of the distance between

columns, as such arrangement of sensors minimally inter-

feres with a typically vertical alignment of fingers during

the capture. We may thus say that the capture process re-

sults in a specific “thermal image” (or “map”) of a hand,

and its resolution is 23× 44 “pixels”.

Figure 1. Top view of the sensor plate used in this work. Six pegs

(fixed during all experiments) help subjects in correct positioning

of their hand.

Each sensor measures temperature within a range of 0-

60◦C with an accuracy of 0.1/0.3◦C (relative/absolute). All

the sensors are of the same type and have been carefully

chosen from a large set of sensor units before final soldering

them into an electronic circuit. We believe that this care

is not an exaggeration as this increases a homogeneity of

electronic elements, and thus the reliability of the device.

To capture a thermal image with an adequate accuracy,

the hand skin should have physical contact with the sen-

sors, yet the hand pressure information (possibly helpful

since the temperature may depend on the object’s pressure

in contact measurement) cannot be assessed due to lack of

the pressure sensors in the device. For a better stability of

the thermal pattern mapping, the plate has threaded holes

between each sensors pair to allow for any installation of the

positioning pegs. The pegs’ positions are fixed when build-

ing a measurement station, and not changed throughout the

device lifespan. Additionally, due to high risk of the elec-

trostatic discharge, the device is equipped with a ground-

ing cable connected with a hand through wristband with a

metal connector (visible in Fig. 1 on the right). Sensor out-

puts are read sequentially. We need 4 ms to read a single

sensor value, and approximately 4.5 seconds are required to

construct the entire thermal map (including communication

burden between the device and the host).

3.2. Database collection

The database employed in this research is a part of a

larger BioBase multimodal set, collected by our team. As

the database is legally registered, the written consent was

signed by each volunteer prior to the measurement. The
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graphical and verbal instructions (especially related to hand

positioning) had been given to each subject to guarantee a

correct triggering of the measurement process and to min-

imize failures to acquire. The quality of each resulting se-

quence was assessed on-line by an operator, and a few in-

correct measurements were repeated.

The entire data collection lasted five months (from sum-

mer to early winter), what positively influenced a diversifi-

cation of outside conditions during capture. We have col-

lected the thermal maps for 50 different subjects (35 men

and 15 women) in an office environment and in three differ-

ent sessions: two first organized at the same day, yet sep-

arated by a few hours, and the third carried out approxi-

mately a week after the second one. Each session yielded a

single sequence of 24 thermal maps per hand (obtained in

one presentation, without changing the hand position): the

first map was captured after 4.5 seconds, and the last one

after 108 seconds, Fig. 2.

Figure 2. Example thermal images captured after a) 4.5, b) 32, c)

72 and d) 108 seconds after the first contact of the hand with the

sensor plate (i.e. four selected images from a complete sequence

of 24 maps). We may observe gradual increase of the sensors tem-

perature, as well as the influence of the hand on the neighboring

sensors having no direct contact with the skin. Color bar on the

right is calibrated in Celsius degrees.

Collecting sequences rather than single maps allows for

investigation of the optimal heating time, being an addi-

tional degree of freedom when optimizing the system setup.

Each session data is accompanied by basic personal data,

as well as background temperature and humidity. The de-

vice was calibrated prior to each presentation. Calibration

is realized by the device driver, and during this process one

should first stabilize the temperature of the sensors leaving

the device for a couple of minutes intact. Then deviations

of the sensors temperature from the global average can be

automatically stored in the driver’s memory.

4. Building a hand thermal biometrics

4.1. Estimation principles

To build a biometric recognition system based on hand

thermal images we need to estimate a) the best (usable)

thermal sensors, or an optimal transformation of the feature

space highlighting individual properties of a hand, b) clas-

sifier parameters and the corresponding acceptance thresh-

olds, and c) the required measurement time (as the thermal

plate warms up slowly). In the first estimation task (a) we

do not use fixed region of interest, as the mRMR method

selects the optimal features by itself, and the PCA-based

transformation employs the entire set of thermal sensors. In

task related to classifier choice (b) we check the usefulness

of simple linear classifiers (due to generalization capabil-

ities). Optimal measurement time (task c) is assessed by

analyzing all 24 thermal maps acquired in each session, and

the winning map points out the required presentation time.

In all these tasks, a use of collected dataset cannot be ac-

cidental, and must coincide with an expected application of

the method. Typical biometric enrollment process requires

multiple presentations, often complemented within a single

session, while the verification attempts are realized some

time apart. We thus follow this typical scenario and use two

first samples (collected at the same day) as the enrollment

data, while the third one (collected a week apart) serves as

a verification probe. The classifiers used in this work are

trained solely with the enrollment samples, and tested with

the remaining verification sample, unknown to the classifier

when being trained. This approach will deliver significantly

higher error rates when compared to the evaluation based on

the same session samples, yet will better reflect the system’s

accuracy expected to be achieved in operational scenarios.

The next subsections summarize all the above aspects of

the proposed method development.

4.2. Feature selection methods

Minimum Redundancy, Maximum Relevance (mRMR).

Peng et al. [3] propose to use a mutual information to select

best features employed in classification problems. This ap-

proach employs Kullback-Leibler divergence of a product

P (X)P (Y ) of two marginal probability distributionsP (X)
and P (Y ) from the joint probability distribution P (X,Y ).
The selection criterion is thus based on the maximum sta-

tistical dependency between the variables X and Y , yet the

direct implementation of the maximum dependency condi-

tion is difficult. Peng et al. developed an equivalent form

of this criterion called the minimal-redundancy maximum-

relevance (mRMR) being a heuristic approach which se-

lects those features that increase the mutual information,

then excludes “redundant” ones. Each thermal sensor is

equated with as a single feature (i.e. the entire set of fea-

tures includes 1012 elements), and a separate recognition
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method – employing different numbers of the first (i.e. the

best) features sorted by mRMR – is built and analyzed in

terms of the EER (equal error rate1). Minimum value of

EER suggests the optimal set of features and the best mea-

surement time (for an applied classification method).

Approaches assessing the usefulness of single features,

as mRMR, additionally point out the best thermal sensors

(i.e. their number and location), which closely correspond

to the areas of a hand delivering optimal biometric thermal

features (Fig. 3). This serves as a hint how to reduce the

number of sensors in such devices (decreasing a hardware

cost) and prevents us from applying fixed and arbitrary (e.g.

rectangular) region of interest.

Figure 3. The graph shows how frequently, and which thermal sen-

sors are selected after 255 iterations of the mRMR method, as-

suming we look for 120 best features. The colorbar on the right

is scaled in percents, i.e. the lighter color refers to a higher will-

ingness of the mRMR to select a given sensor. Note that feature

selection mechanism correctly selects sensors having contact with

a hand, and rejects all the background sensors.

Principal Component Analysis (PCA) and its combi-

nation with Linear Discriminant Analysis (PCA+LDA).

PCA (also known as Karhunen-Loeve’s transform) and

LDA (closely related to Fisher’s linear analysis) are widely

documented in the scientific literature, and successfully

used for reduction of feature space dimensionality. PCA

finds a subspace SM of the input space VN of – possibly

correlated – variables (where M ≤ N ) and the basis vec-

tors of SM correspond to the maximum variance of vari-

ables in the original space VN . As typically M ≪ N , the

PCA offers a significant reduction of space dimensional-

ity, particularly important for spaces sparsely populated by

variable exemplars, what have a positive impact on further

classification reliability. In this paper we calculate the EER

for each number of the first n principal components, where

1we use zero-order approximations of false match and false non-match

error functions to calculate the equal error rate

n = 1, ..., N , and N = 1012 corresponds to the number

of thermal sensors (as we employ the entire set of thermal

sensors in PCA), and select the solution (i.e. the number of

first principal components) with the lowest error rate.

LDA considers (in addition to the PCA) a within-class

variability, and employs it along with between-class vari-

ance to find a linear combination of input variables building

an optimal hyperplane that separates input samples given

their class affiliations. However, a small number of within-

class probes (i.e. two enrollment samples in a database used

in this work) may result in singular within-class scatter ma-

trices, making the LDA infeasible. Fortunately, this sin-

gularity may be avoided by applying the PCA prior to the

LDA. This combination is often referred to as PCA+LDA,

and typically outperforms PCA or LDA applied separately

[6]. In PCA+LDA feature estimation approach we still find

the optimal number of principal components in a first step

(PCA), and the LDA is always applied after the PCA trans-

formation. Similarly to the previous approaches, we choose

configuration offering the lowest EER.

4.3. Classification methods

Limited number of training samples for each class (i.e.

two enrollment samples per hand) calls for classification

techniques with strong generalization capabilities. We thus

engage two linear classifiers (k-nearest neighbors and sup-

port vector machine with linear kernel) and skip showing

results for nonlinear neural network, as the experiments re-

vealed a high tendency to network overtraining in this task,

poor generalization and hence higher error rates.

k-Nearest Neighbors (kNN) method classifies incoming

(unknown) points by a majority voting realized by k nearest

neighboring elements to the incomer, given a distance met-

ric. In this work we realize a binary classification task, i.e.

the verification sample is classified to the claimed identity

class, or the claimed identity is rejected. We set k = 1 and

use both the enrollment samples in voting. The Euclidean

distance is used, the maximum allowed distance between

new and the existing samples is set at the enrollment (train-

ing) stage, and serves at the verification as the acceptance

threshold.

Support Vector Machine (SVM) is a supervised learn-

ing technique that finds a hyperplane maximizing a gap be-

tween training samples representing different classes. Sim-

ple “kernel trick” allows to solve nonlinear classification

problems, yet we stay with a linear classifier. We build

a separate SVM for each subject based on two enrollment

samples so that to classify subjects’ new probes against im-

postor exemplars. Each SVM is thus tested for the remain-

ing (third), verification thermal map (unknown at the train-

ing stage).
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4.4. Estimation results

Biometric recognition scenario, as detailed in 4.1, is ap-

plied for any possible measurement time and any possible

transformation of the feature set. We may say that each such

configuration constitutes an independent biometric recog-

nition system, and thus its reliability may be assessed by

calculating the EER. We repeat a system building scenario

100 times, each time employing a data corresponding to 25

subjects chosen randomly from a full set of 50 volunteers.

Hence, an optimal configuration (number of features / cap-

ture time) is based on average (not single) EER.

Above analysis is repeated independently for a few com-

binations of feature selection and classification methods.

We calculate an average EER as a two-argument function

of capture time and number of features (when mRMR is

applied) or number of principal components (for PCA and

PCA+LDA approaches). Figures 4 and 5 present results ob-

tained when the mRMR is applied for feature selection, and

the class membership of the enrollment samples are esti-

mated by kNN and SVM classifiers, respectively. Optimal

combinations of capture time and number of features (min-

imizing EER) yield in both cases substantial reduction of

the feature space (139 and 50 thermal sensors for kNN and

SVM classifiers are used, respectively).

Figure 4. Equal error rate for different combinations of the mea-

surement time (multiple of 4.5 seconds) and number of best fea-

tures (sensors). The mRMR feature selection and kNN classifi-

cation methods are used. Minimum of average EER=11.03% is

achieved for 139 best features (i.e. sensors) and 13.5 second mea-

surement time.

Since kNN classifier leads to lower EER when com-

pared to the SVM, we further narrow analysis of PCA and

PCA+LDA feature space transformation methods to this

classification approach, Fig. 6 and 7. Again, significant

reduction of the feature space may be observed, similarly

to the mRMR feature selection method. PCA suggests us-

ing 115 principal components, and adding the LDA analy-

sis limits the feature space to only 25 dimensions. The latter

estimation approach additionally yields the best system per-

formance, i.e. EER∈ 〈0.027, 0.116〉, with its sample mean

value equal to 0.067.

Figure 5. Same as in Fig. 4 except that SVM classifier is used.

Minimum of average EER=14.43% is achieved after 9 seconds and

only 50 features are used in thermal maps.

Figure 6. Equal error rate for different combinations of the mea-

surement time and number of principal components returned

by PCA. k-NN classification method is applied in a new 115-

dimensional feature space (i.e. 115 principal components are

used), and minimum EER=14.76% is achieved after 18 seconds

of the measurement.

Figure 7. Same as in Fig. 6, except that the LDA is performed after

the PCA. Minimum EER=6.67% is achieved after 9 seconds and

only 25 principal components are used.

Additionally to the reduction of feature space dimen-

sionality, all estimation techniques selected shorter capture

times (remind that the measurement time is a multiple of 4.5

seconds due to hardware capabilities). This may contradict

our intuition prompting that the longer measurement times

should more accurately reflect real hand temperature distri-
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butions, and thus result in more reliable recognition. How-

ever, such reasoning neglects a thermal conduction phe-

nomenon, what makes any single sensor accumulating the

heat associated to a larger skin area once the measurement

time increases. This smooths away thermal maps (as can

be spotted in Fig. 2) and subtle individual thermal features

of a skin become hidden in prevailing average (cumulated)

temperatures.

Figure 8. Boxplots for all four variants of feature space transfor-

mation and classifier. Central dots represent median EER, edges of

the boxes correspond to 25th and 75th percentiles of the EER dis-

tribution and whiskers cover 1.5 of the interquartile range. Maxi-

mum and minimum values are also depicted above and below the

whiskers, respectively.

Figure 8 summarizes the recognition accuracy obtained

for different feature selection and classification approaches.

Median EER (as a complement to average presented earlier)

as well as its minimum and maximum values are provided.

We may finally select the PCA+LDA feature space transfor-

mation method and the kNN classification as the winning

approach to recognize the hand thermal maps.

5. Conclusions

Results presented in this paper suggest that we can claim

individuality of hand skin temperature distributions. How-

ever, we should interpret these results cautiously. Firstly,

reduced dimensions of the feature space (applied in clas-

sification) were smaller than the number of classes. This

easily (and not surprisingly) has lead us to perfect clas-

sification (i.e. EER=0) when only the enrollment samples

were used (due to possibility of performing a linear clas-

sification of any N points scattered within N -dimensional

space). This however raises a question if the classifiers had

a chance to locate the classification hyperplanes adequately

to the problem being solved. Observing nonzero error rate

when using verification samples (as depicted in Sec. 4.4)

may call for collecting definitely larger datasets to populate

the feature space less sparsely, and additionally reflects lim-

ited stationarity of hand thermal maps. Secondly, the way of

measurement (thermal sensors plate) cannot be neglected as

the measurement repeatability and ergonomics may be seri-

ously increased by using thermal cameras (yet accepting a

higher cost of the sensor).

Limited accuracy of this method should not however dis-

qualify its usage in biometrics. Thermal maps deliver in-

formation that cannot be obtained when the hand is mea-

sured in a visible or near-infrared light. Hence a two-modal

system can be build combining geometry and thermal fea-

tures, that can be measured at the very same presentation.

Additionally, hand temperature is relatively difficult to be

measured without the will of the subject, and its accurate

reconstruction (e.g. in a hand imitation, or cadaver part) is

almost impossible. This perfectly matches recent endeav-

ors to equip biometric systems with liveness detection tech-

niques. Expanding existing hand geometry sensors (rela-

tively easily to be deceived, if only a hand silhouette is mea-

sured) with hand thermal sensors may thus significantly in-

crease their security as the presentation attack would be far

more difficult to be succeeded.
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