
Learning-Free Iris Segmentation Revisited: A First Step Toward Fast Volumetric
Operation Over Video Samples

Jeffery Kinnison
University of Notre Dame
Notre Dame, Indiana, USA

jkinniso@nd.edu

Mateusz Trokielewicz
Research and Academic Computer Network

Warsaw, Poland
mateusz.trokielewicz@nask.pl

Camila Carballo
University of Notre Dame
Notre Dame, Indiana, USA

ccarball@nd.edu

Adam Czajka
University of Notre Dame
Notre Dame, Indiana, USA

aczajka@nd.edu

Walter Scheirer
University of Notre Dame
Notre Dame, Indiana, USA
walter.scheirer@nd.edu

Abstract

Subject matching performance in iris biometrics is con-
tingent upon fast, high-quality iris segmentation. In many
cases, iris biometrics acquisition equipment takes a num-
ber of images in sequence and combines the segmentation
and matching results for each image to strengthen the re-
sult. To date, segmentation has occurred in 2D, operating
on each image individually. But such methodologies, while
powerful, do not take advantage of potential gains in perfor-
mance afforded by treating sequential images as volumetric
data. As a first step in this direction, we apply the Flexible
Learning-Free Reconstructoin of Neural Volumes (FLoRIN)
framework, an open source segmentation and reconstruc-
tion framework originally designed for neural microscopy
volumes, to volumetric segmentation of iris videos. Further,
we introduce a novel dataset of near-infrared iris videos,
in which each subject’s pupil rapidly changes size due to
visible-light stimuli, as a test bed for FLoRIN. We com-
pare the matching performance for iris masks generated
by FLoRIN, deep-learning-based (SegNet), and Daugman’s
(OSIRIS) iris segmentation approaches. We show that by
incorporating volumetric information, FLoRIN achieves a
factor of 3.6 to an order of magnitude increase in through-
put with only a minor drop in subject matching perfor-
mance. We also demonstrate that FLoRIN-based iris seg-
mentation maintains this speedup on low-resource hard-
ware, making it suitable for embedded biometrics systems.

1. Introduction and Application Context

Iris segmentation is perhaps the most important step
in the iris recognition pipeline. Given the complex, rich

iris texture used to extract identifying features for subject
matching, segmentations must correspond closely to the
actual iris. Lack of precise segmentation results in mis-
alignment of tiny iris features and, in consequence, a high
probability of false matches or non-matches. In the 25
years following Daugman’s seminal work on iris recogni-
tion [11], a wide variety of approaches to iris segmentation
have achieved high matching accuracy. Despite the wealth
of methodologies, iris segmentation that simultaneously op-
erates in real-time and affords a high degree of accuracy and
generalization still seems to be just beyond our grasp.

The obvious tradeoff between speed and accuracy has
led us to introduce a new paradigm for iris segmentation
in this paper by processing iris image sequences as volu-
metric data. Since iris recognition cameras usually capture
iris videos internally, and apply various quality checks to
pick a single iris image to be used in feature extraction,
we may assume that such videos are available in current
commercial deployments. As a first, exploratory, step in
this direction, we propose to apply the recently introduced
Flexible Learning-Free Reconstruction of Neural Volumes
(FLoRIN) pipeline [26], which was originally designed for
processing volumetric image stacks of neural microscopy
data. FLoRIN allows us to use information about the iris
location not only in 2D space but also along the temporal
axis, for example across multiple frames of an iris video.

We show that when FLoRIN is used, a minimal and
acceptable drop in the overall iris recognition accuracy is
compensated for by iris segmentation processing times that
are a factor of 3.56 faster than deep-learning-based solu-
tions. When compared to other learning-free state-of-the-
art iris segmentation techniques, FLoRIN-based processing
is approximately an order of magnitude faster. This per-
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formance is maintained on low-resource hardware, making
FLoRIN a good candidate for embedded iris matching solu-
tions. Moreover, the FLoRIN-based iris segmentation does
not need training, which is required for deep-learning-based
methods, instead requiring tuning two threshold values over
the interval [0, 1]. Following publication, we will make both
the FLoRIN-based iris segmentation software and the new
database of iris videos publicly available.

Summarizing, the novel contributions of this paper are:

1. The application of the FLoRIN framework for volu-
metric iris segmentation, along with the source code of
the resulting FLoRIN-based volumetric and learning-
free iris segmentation tool (presented in Sec. 3).

2. A novel database of iris near-infrared videos, present-
ing various pupil sizes as a result of visible light stimuli
(presented in Sec. 5).

3. Evaluations of FLoRIN-based, deep learning-based,
and Daugman’s segmentation approaches on a novel
benchmark in terms of the matching accuracy and
speed (described in Sec. 6).

4. An evaluation of FLoRIN-based and Daugman’s
segmentation implementations for embedded subject
matching on a Raspberry Pi (presented in Sec. 6)

2. Related Work
As the first step of iris recognition, iris segmentation has

been approached in a variety of ways. Early and, for many
years, dominant methods relied upon the circular structure
of both the pupil and the iris, as proposed by Daugman [11].
In addition to circular approximations of iris boundaries,
those methods detected eyelids, eyelashes, specular reflec-
tions, and excluded these occlusions from feature matching.

Subsequent approaches departed from circular approx-
imations, and in many cases were inspired by Daugman’s
suggestion to use a Fourier series to provide a more complex
model of the iris boundary [12]. Arvacheh and Tizhoosh [5]
proposed using active contour models to detect the pupillary
and limbic boundaries of the iris, taking into consideration
the fact that neither the pupil nor the iris are perfectly circu-
lar, but are near-circular. They also introduced an algorithm
that iteratively detects and excludes eyelid areas that cover
the iris. In another approach, Shah and Ross [25] proposed
a method for extracting the iris using geodesic active con-
tours to locate the boundaries of the iris in a given image.
They focused on finding the boundaries of the iris, taking
into consideration the fact that the iris is not necessarily cir-
cular due to the presence of these occlusions.

Other methods approached iris segmentation from a lo-
calization perspective. Luengo et al. [19] proposed using
mathematical morphology to extract the outer boundaries

of both the pupil and the iris. They dealt with occlusions by
simply removing portions of the segmentation which likely
contained parts of the eyelid, eyelashes, reflections, etc. In
another approach, He et al. [14] extracted the iris center
from the image and from that detected the iris boundaries.
The novelty of their algorithm was the use of a histogram
filter to detect irregularities in the shape of the eyelids.

More recently, iris segmentation has moved away from
these classical approaches toward machine learning ori-
ented methods. Li et al. [17] proposed a method which uses
k-means clustering to detect the outer boundary of the iris.
In a similar fashion, Sahmoud and Abuhaiba [24] proposed
using k-means clustering to determine the region of the iris.

Recent advances in deep learning-based segmentation
have resulted in many applications of convolutional neu-
ral network architectures to iris segmentation. Jalilian and
Uhl [16] proposed to use several types of convolutional
encoder-decoder networks and reported better performance
for deep learning-based approaches when compared to con-
ventional algorithms such as Daugman’s approach [21],
WAHET [29], CAHT [23] and IFPP [28]. Arsalan et al.
proposed to use a modified VGG-Face network to segment
visible-light [3] and near-infrared [4] iris images. Other
deep learning-based iris segmentation techniques include
using a re-trained U-Net et al. [18], semi-parallel Fully
Convolutional Deep Neural Networks [7], Generative Ad-
versarial Networks [8] and Mask R-CNN [1]. SegNet [6]
was successfully re-trained by Trokielewicz et al. [27] to
segment very challenging post-mortem iris images.

The ideal segmentation method would be fast, generaliz-
able across subjects and sensors, and explainable to enable
error detection and correction. Learning-based solutions
are promising, however long training times and bias toward
training datasets limit the performance of standard machine
learning and deep learning models in the wild. Moreover,
deep learning models are black boxes wherein errors are dif-
ficult to explain. By contrast, the FLoRIN pipeline used in
this work is a deterministic set of operations that requires
only setting two threshold values. Moreover, as will be
shown, it operates on sequential image data more quickly
than standard methods, enabling real-time iris segmenta-
tion. Last but not least, the number of open-sourced iris
segmentation tools is currently very limited, despite a large
number of papers proposing various solutions. FLoRIN-
based iris segmentation software is offered with this paper.

3. The FLoRIN Framework
The FLoRIN framework is a multi-stage pipeline with

flexible image processing steps in each stage. FLoRIN
was originally developed to meet the challenges of seg-
menting volumes of neural microscopy, enabling automatic
discovery of non-standard structures like cells, vasculature,
and myelinated axons. By incorporating volumetric data



Figure 1: Overview of the FLoRIN pipeline for iris segmentation. (1) A batch of images are loaded into the pipeline. (2a)
The batch is thresholded with N-Dimensional Neighborhood Thresholding (NDNT) at a low threshold value to capture the
iris, pupil, and eyelids. (2b) The batch is thresholded again at a high threshold value to isolate the pupil. (3) The pupil is
isolated from any other connected components and collapsed into a single image. (4) A circular mask with a diameter of half
the smaller dimension of the collapsed pupil image is centered on the pupil centroid. (5) The final masks are created from
the XOR of (2a) and (2b), then all pixels outside of the circular mask from (4) are zeroed. The result is a batch of masks the
same size as the input batch.

into the segmentation process through the N-Dimensional
Neighborhood Thresholding (NDNT, Section 3.1) algo-
rithm [26], FLoRIN was able to boost the signal of features
of interest without requiring any machine learning. In this
way, FLoRIN achieved state of the art results across a num-
ber of imaging modalities in neural microscopy.

Conventionally, the FLoRIN pipeline consists of three
major stages:

1. Segmentation. The images are loaded into FLoRIN
and optionally processed to improve contrast, for ex-
ample by histogram equalization, Weiner filters, etc.
The images are then thresholded in 2D or 3D using
NDNT [26] parameterized by a threshold value in
range [0, 1] and a pixel neighborhood size. The neigh-
borhood size can specify a neighborhood in two or
three dimensions, the latter enabling the incorporation
of volumetric data into the thresholding. The binarized
NDNT output is then passed to the next stage.

2. Identification. The Segmentation stage output is pro-
cessed to remove holes and artifacts, and morpholog-
ical operations may be applied in 2D or 3D to refine
the segmentation. Connected components are discov-
ered and grouped by geometric and grayscale proper-
ties. This form of weak classification enables labeling
different classes of structure; in neural microscopy this
groups connected components corresponding to neu-

rons, axons, etc. In iris segmentation, we use this stage
to identify the pupil for separation from the iris pixels.

3. Reconstruction. The grouped connected components
are labeled and output into image files for analysis.
Properties of the connected components are saved to
file, from which statistics about the discovered struc-
tures may be computed. In the case of iris segmen-
tation, the Reconstruction stage outputs binary masks
corresponding to the discovered iris pixels.

FLoRIN can operate on 2D images or 3D volumes, in-
cluding time series or video data, at all stages. In particular,
3D segmentation and identification allows FLoRIN to ac-
count for volumetric data. For iris segmentation, we apply
the 3D FLoRIN pipeline to videos of irises, wherein the
volumetric dimension is time. This allows for the segmen-
tation of the iris and pupil as features spanning multiple im-
ages, increasing the probability of segmenting the features
of interest. In this work, we focused on adapting the Seg-
mentation and Identification stages of FLoRIN, tailoring the
pipeline to process iris images as shown in Figure 1. Algo-
rithm 1 provides a full description of the pipeline.

3.1. N-Dimensional Neighborhood Thresholding

Central to FLoRIN is the NDNT algorithm, which is ap-
plied during the Segmentation stage to binarize images and



Algorithm 1: FLoRIN Iris Segmentation Pipeline
Data: video: the video to process.
Data: depth: the number of frames to process at once.
Data: tiris: iris segmentation threshold value.
Data: tpupil: pupil segmentation threshold value.
Data: wiris: iris segmentation neighborhood size.
Data: wpupil: pupil segmentation neighborhood size.
Result: A 3D array containing the iris masks.
Create an empty array seg.
foreach block of size depth in video do

Segment block into iris and pupil with NDNT
parameterized by (tiris, wiris) and
(tpupil, wpupil).

Fill holes in iris and pupil.
Remove small connected components from iris

and pupil.
Create final as the XOR of iris and pupil.
Collapse pupil and find connected components.
Create a circle centered on the detected pupil.
Zero out all elements outside of the circle in each

frame of final.
Concatenate seg and final.

end
return seg

volumes. NDNT is based on the thresholding method in-
troduced by Bradley and Roth [9], which uses the integral
image to compute neighborhood statistics around each pixel
and threshold based on the neighborhood average pixel in-
tensity. This method was extended by Shahbazi et al. [26] to
operate in n dimensions, allowing for the method to account
for volumetric and channel-level information.

NDNT was shown to outperform standard thresholding
methods when operating on neural microscopy data, gener-
alizing to multiple imaging modalities and features. More-
over, NDNT operates solely on the pixel neighborhood his-
tograms, requiring tuning a single thresholding parameter in
range [0, 1]. Compared to learning-based methods, NDNT
bypasses long training times and is explainable based on the
input images and neighborhood size. In the case of iris seg-
mentation, it can account for sequential images of the same
iris, strengthening the signal for segmentation.

4. Baseline Iris Segmentation

In this section we describe the two baseline iris segmen-
tation methods — SegNet [6] and OSIRIS [21] — that we
compare against, as well as the subject matching pipeline
used to evaluate all segmentation methods.

4.1. SegNet DCNN Model

To evaluate the accuracy of the proposed iris-adapted
FLoRIN pipeline in comparison with a state-of-the-art seg-
mentation method, we deploy a SegNet model [6] trained on
several standard iris biometrics datasets their correspond-
ing ground truth masks. SegNet is a fully convolutional
encoder-decoder architecture, with the encoder stage being
a modified VGG-16 model with removed fully connected
layers, and the decoder stage comprising convolutional and
upsampling layers corresponding to the max pooling layers
of the encoding stage. SegNet has achieved state of the art
performance on semantic segmentation tasks, including a
recent successful use in segmentation of challenging post-
mortem iris images [27].

4.2. Training Procedure and Data

To tune the original SegNet model to segment iris im-
ages, we performed a re-training procedure with images
drawn from several publicly available databases, including
the Biosec baseline corpus [13] (1200 images), the BATH
database1 [20] (148 images), the ND0405 database2 (1283
images), the UBIRIS database [22] (1923 images), and
the CASIA-V4-Iris-Interval database3 (2639 images). The
ground truth masks came from the IRISSEG-CC dataset
by Halmstad University [2] (for the Biosec set), from the
IRISSEG-EP dataset by the University of Salzburg [15]
(CASIA-V4-Iris-Interval, Notre Dame 0405, and UBIRIS).
For the BATH subset, we created the binary masks our-
selves. The model was trained in MATLAB for 120 epochs
with a batch size of 4, using an SGDM optimizer with a mo-
mentum of 0.9, learning rate of 0.001, and L2 regularization
of 0.0005. The training examples were shuffled after each
epoch. In total, training took approximately one day on an
NVIDIA GTX 1070 GPU.

4.3. OSIRIS Segmentation and Matching

In addition to the SegNet model, we also evaluate the
original, unmodified OSIRIS segmentation. OSIRIS is an
open-source academic matcher, which implements the prin-
ciples of original Daugman concept, including iris segmen-
tation using the circular Hough transform and subsequent
refinement with active contours, iris image normalization,
and Gabor-based filtering, which yields binary codes that
allow for efficient matching. In this paper, we use OSIRIS
in three different modes:

1. baseline conventional: stock OSIRIS for both seg-
mentation, matching, and encoding

1http://www.bath.ac.uk/elec-eng/research/sipg/
irisweb/

2https://cvrl.nd.edu/projects/data/
3http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/
http://www.bath.ac.uk/elec-eng/research/sipg/irisweb/
https://cvrl.nd.edu/projects/data/
http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp


Figure 2: An example iris video recorded for this paper with selected 3D volumes processed by FLoRIN, and selected single
frames processed by OSIRIS and SegNet. Red and blue circles shown in SegNet and OSIRIS segmentation masks illustrate
the result of Hough transform-based curve fitting, used in post-segmentation steps in iris image normalization and matching.

2. baseline DCNN: SegNet masks and OSIRIS encoding
and matching

3. proposed: FLoRIN masks and OSIRIS encoding and
matching

Each mode allows us to obtain ROC (Receiver Operating
Characteristic) curves, which we use to denote the recogni-
tion accuracy that each set of iris masks enables.

5. Benchmark Iris Video Dataset
To enable processing volumetric data with FLoRIN, we

used a newly collected database of iris videos, acquired in
near-infrared, which is released as a part of this work. To
include a wide spectrum of pupil dilation, we followed the
acquisition protocol defined by Czajka [10], and collected
30-second videos, at a rate of 25 frames per second, of an
iris stimulated by visible light. That is, during the first 15
seconds, 375 iris images are taken in darkness (yet small
pupil oscillations, called hippus are still present). During
the next 5 seconds, 125 iris images are taken right after the
visible light is switched on. This forces the pupil’s rapid
constriction and acquisition of sample under varying pupil
size. The last 250 images are taken right after the visible

light is switched off, making the pupil to dilate and provid-
ing additional samples with varying size of the iris texture.
Hence, each video comprises 750 iris images. All sam-
ples are compliant with ISO/IEC 19794-6 standard. Fig.
2 presents selected frames taken from an example video,
along with OSIRIS, SegNet and FLoRIN segmentations.

42 subjects participated in the data acquisition. We col-
lected from one to four videos for each subject at the 25
FPS rate. Except for 17 videos, all sequences comprise 750
frames, and the total number of iris images considered in
this work is 117,717. Researchers interested in obtaining a
copy of this dataset are requested to follow the instructions
provided at http://...4.

6. Experiments
A key question we sought to answer in our experiments

is: how close to top performing iris segmentation perfor-
mance can one get with a learning-free method that is opti-
mized for speed? To answer this question, we processed
the collected iris video data with the proposed FLoRIN
pipeline (Section 3. We then compared FLoRIN matching
performance with segmentations generated by SegNet and

4link removed temporarily to make this submission anonymous

http://...


OSIRIS (Section 4.1), both of which are limited to 2D pro-
cessing. All code used in these evaluations will be released
upon publication.

For the assessment of the matching accuracy, we normal-
ize the segmentation outputs produced by the SegNet and
FLoRIN algorithms to fit them into the OSIRIS recognition
pipeline (Section 4.3. Circular Hough Transform (CHT)
is employed to approximate the iris and pupil boundaries
in the obtained binary masks. OSIRIS to normalizes the
iris images and corresponding masks onto a dimensionless
polar-coordinate rectangle, which is then used in the Gabor
filtering and encoding stage.

Genuine matching performance was computed by first
selecting every tenth frame of each video, then comparing
the selected frames. Impostor matching performance was
computed by first selecting every twentieth frame of the first
video for each eye, then comparing the selected frames rep-
resenting different eyes. Approximately 100k genuine com-
parisons and approximately 200k impostor comparisons
were conducted. Comparison pairs were identical for all
tested methods.

Our analysis shows that FLoRIN dramatically increases
the speed of segmentation while incurring only minor
penalties to subject matching performance. For each video,
FLoRIN processed batches of 5 frames at a time. All
throughput analyses were computed on a system with 4 In-
tel Xeon E5-2650 v4 processors, 24GB of RAM, and an
NVIDIA GTX 1080ti GPU, using versions of the videos
downsampled to 320× 240 pixels per frame.

Method AUC EER Mean FPS
FLoRIN [26] 0.962 0.074 37.38 ± 2.58
SegNet [6] 0.992 0.016 10.50± 1.14

OSIRIS [21] 0.996 0.017 3.24± 0.28

Table 1: Matching Performance and Segmentation
Throughput. The mean frames per second (FPS) is com-
puted as the average per-video FPS over all 159 videos.

FLoRIN offers a substantial increase in throughput over
SegNet and OSIRIS. As shown in Table 1, FLoRIN is a
factor of 3.56 faster than SegNet and an order of magni-
tude faster than OSIRIS processing the same videos. This
throughput increase is a direct result of processing videos
in 3D: a batch of frames is segmented in parallel using sur-
rounding frames to boost the signal, then all frames in the
batch are post-processed simultaneously to improve the seg-
mentation. This scheme introduces data parallelism across
the time dimension of the videos which is unavailable to
SegNet, OSIRIS, and other 2D segmentation methods.

The increased speed of FLoRIN comes with minor sub-
ject matching performance degradation. The receiver oper-
ating characteristic (ROC) curve of the inverse False Nega-

Figure 3: Receiver operating characteristic of the False
Match Rate (FMR) versus the inverse False Non-Match
Rate (FNMR) for FLoRIN, SegNet, and OSIRIS on the
pupil dynamics dataset.

tive Match Rate vs the False Match Rate of subject match-
ing for each method is shown in Figure 3. FLoRIN has
an area under the curve (AUC) of 0.96 and an equal error
rate (EER) of 0.07 (Table 1), while SegNet and OSIRIS
both boast an AUC of 0.99 and an EER of 0.02. Qual-
itatively, we find that the FLoRIN segmentations tend to
under-segment the pupil, leading to a greater proportion of
non-iris pixels included in the normalized masks. This issue
will be addressed with additional quality control operations
as FLoRIN continues to develop.

Throughout this experiment, FLoRIN thresholding pa-
rameters were manually selected on a per-video basis, how-
ever in many cases the threshold values transferred between
videos of the same subject. Parameter values were selected
by a sweep over the real-valued domain [0, 1] applied to a
subset of each video. The results were then manually exam-
ined to determine the optimal threshold values. By reusing
intermediate data computed by the NDNT algorithm that is
invariant to threshold value, we were able to quickly seg-
ment these subsets across a large number of threshold val-
ues. We evaluated this scheme across subsets of 5 frames of
each video with threshold values spaced at 10−2 and found
that the parameter sweep could be completed in approxi-
mately 2s for a given window size.

6.1. Recommendations for Threshold Parameters

While manually tuning the iris and pupil threshold val-
ues for each of the videos, we discovered a number of trends
in the selection of threshold values and neighborhood win-
dows sizes. We break these recommendations down by fea-
ture to enable others to apply FLoRIN to new data.

Iris Parameters. As the iris spans a large percentage



(a) 48 L 1 Frame 286 (b) 53 L 1 Frame 132 (c) 62 L 1 Frame 27 (d) 73 R 1 Frame 223 (e) 85 L 1 Frame 14

Figure 4: Examples of lower-quality FLoRIN segmentations. These segmentations are the result of mis-identification of
the pupil connected component, remaining pixels connecting the pupil and eyelid, and blinking on the part of the subject.
The quality of these segmentations can be improved with per-batch threshold parameters and quality control mechanisms to
remove blink frames.

of each frame in a video, we found that a larger neighbor-
hood was better able to capture the iris pixels. In every
video, we used a window of size 2 × 256 × 256 around
each pixel, which accounts for the previous and subsequent
frames. Given the size of the window, we recognize that this
is similar to a global thresholding method with the inclusion
of volumetric data. Threshold values for the iris tended to
the domain [0.2, 0.5], with a sensitivity of 0.01.

Pupil Parameters. Pupil segmentation was more sensi-
tive to neighborhood size, relative to the shape of the image
histogram. In the case of a histogram tending toward the
right, a large 2 × 256 × 256 neighborhood with threshold
values in domain [0.7, 0.95] sufficed to capture the pupil.
In extreme cases with a tall peak of low-intensity values,
for example when the subject wore eyeliner, we found that
2×64×64 or 2×32×32 neighborhoods were better suited
to isolate the pupil. The domain of threshold values differs
for smaller neighborhood sizes, typically between [0.1–0.3],
with a sensitivity of 0.01.

In both cases, the threshold values could be narrowed to
a subset of [0, 1]. These findings indicate that the optimal
threshold value is a function of the image histogram and
the window size. This function could be used to develop an
automatic parameterization scheme, either through machine
learning or another optimization scheme.

6.2. Performance on Low-Resource Hardware

Given the large improvement in running time perfor-
mance of FLoRIN over SegNet and OSIRIS, Table 1,
we hypothesized that FLoRIN would be suitable for low-
resource hardware and embedded systems. We conducted a
second timing experiment on a Raspberry Pi 3 with 4 cores
and 1GB of RAM. We processed the first 20 frames of each
video on the Pi with FLoRIN and OSIRIS using the same
setup used to process the full videos.

With the limited resources available to the Pi, FLoRIN
processed the video subset with a mean throughput of
4.50± 0.36 frames per second per video. This was an order
of magnitude greater than OSIRIS, which had a throughput

of 0.38±0.03 frames per second per video. The throughput
afforded by FLoRIN on the Pi indicates that FLoRIN is fast
enough to enable segmentation on embedded systems, e.g.
commercial iris recognition hardware.

7. Discussion
Deep learning has, in many ways, revolutionized the

field of biometrics. However, it is not the only way to ap-
proach problems like iris segmentation. Legitimate criti-
cisms of deep learning exist in the form of long training
times, the need for large amounts of hand-labeled training
data, and the complexity of optimizing various hyperparam-
eters. And frustratingly, even when all of these problems
have been addressed for a single dataset or operational sce-
nario, the move to a different setting forces one to start all
over again. Generalization remains an open problem within
the field of machine learning at large.

Our turn back to learning-free methods is a direct re-
sponse to this dilemma. Elaborate training regimes lean-
ing on massive data collection and annotation efforts can
be dispensed with in favor of immediate inference opera-
tion. A move to a new dataset or acquisition setting may be
as simple as making a few adjustments to a minimal set of
free parameters before deployment. Several decades worth
of work on image processing and computer vision should
not be ignored — the literature is filled with older tech-
niques that can be updated for today’s problems to achieve
remarkable performance gains and avoid the generalization
dilemma. The FLoRIN approach is just one example of this.

Given the observed speed of iris segmentation with
FLoRIN, we propose that the pipeline used in this work can
be deployed as a semi-automated annotator for generating
ground truth. Using FLoRIN, a new dataset may be pro-
cessed rapidly, and the output masks may be proofread by
human annotators to create pixel-level ground truth labels.
This scheme will enable rapid release and dissemination of
new databases for use across the biometrics community.

This study represents the initial application of FLoRIN
to iris segmentation, and as such required manually tuning



the parameters of the NDNT algorithm. We are in the pro-
cess of evaluating a number of methods for automatic pa-
rameterization, including grid search across threshold val-
ues using Reverse Classification Accuracy [30] as a guide
and regression models to map images to threshold values.
Such automation will reduce the need for a human in the
loop. Based on the results of Section 6.2, we believe an
automatically-parameterized FLoRIN will be ideal for em-
bedded iris biometrics systems.
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