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Abstract. Apart from ensuring high recognition accuracy, one of the
main challenges associated with mobile iris recognition is reliable Presen-
tation Attack Detection (PAD). This paper proposes a method of detect-
ing presentation attacks when the iris image is collected in visible light
using mobile devices. We extended the existing database of 909 bona-
fide iris images acquired with a mobile phone by collecting additional 900
images of irises presented on a color screen. We explore different image
channels in both RGB and HSV color spaces, deep learning-based and
geometric model-based image segmentation, and use Local Binary Pat-
terns (LBP) along with the selected statistical images features classified
by the Support Vector Machine to propose an iris PAD algorithm suit-
able for mobile iris recognition setups. We found that the red channel in
the RGB color space offers the best-quality input samples from the PAD
point of view. In subject-disjoint experiments, this method was able to
detect 99.78% of screen presentations, and did not reject any live sample.

Keywords: biometrics - iris recognition - presentation attack detection
- mobile devices

1 Introduction

Iris biometrics is popular in high-security applications, since it provides a de-
cent level of recognition accuracy compared to other biometric traits. Due to
the ubiquity of mobile devices, with a 10 year increase in the average number
of devices per 100 people from 50.6 to 103.5 [2], currently one of the fastest-
growing branches of biometrics is the mobile-based authentication. In addition
to high recognition accuracy, these solutions must also be resilient to attacks.
This paper proposes an open-source Presentation Attack Detection for biometric
systems using iris images collected in a mobile environment with non-specialized
sensors, which broadens the possible applications beyond those to which the
device manufacturer restricts a given biometric implementation. The method,
utilizing local binary patterns and statistical image features selected with PCA
and classified with an SVM, is able to reach close-to-perfect performance on a
subject-disjoint testing subset consisting of live and screen iris presentations.
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The study advances the research in iris and periocular biometrics by offering
the following contributions to the state of the art:

— an open-source code for two PAD methods suitable for detecting color irises
presented on a screen: one based on LBP texture descriptor, which detects
areas with specific frequencies, the second employing statistical features of
the image; this can serve as a useful benchmark method for visible light iris
PAD,..

— extension of the existing database, consisting of 900 attack iris presentations
obtained by imaging an iris sample displayed on a color screen,?,

— analysis of the optimal color representation of samples collected in visible
light employing different color spaces and their individual channels, with re-

spect to both the PAD component as well as the overall recognition accuracy.

2 Related work review

The importance of equipping a biometric system with a reliable Presentation
Attack Detection component is already well recognized throughout the biomet-
rics community. Researchers have proposed numerous methods for detection of
attack irises, including paper printouts, textured contact lenses, or prosthetic
eyes. These techniques include employing image texture descriptors, such as Lo-
cal Binary Patterns (LBP) [14], Binarized Statistical Image Features (BSIF)
[16], or Local Phase Quantization [22], keypoint detectors and descriptors such
as Scale Invariant Feature Transform (SIFT) [18], as well as calculating im-
age quality metrics [8]. Deep-learning-based PAD techniques have also recently
emerged, e.g., [20]. Thavalengal et al. proposed a multi-spectral analysis of the
iris [23]. Czajka, on the other hand, exploited biological properties of the eye’s
reaction to light stimuli, introducing a method based on pupil dynamics [12].
Recently, Trokielewicz et al. proposed a deep-learning-based PAD component
for detecting cadaver iris presentations [4]. In the mobile domain, methods such
as exploiting the properties of a light field camera have been proposed [19], or
employing magnified phase information[21]. Recently published review paper by
Czajka and Bowyer presents a systematic summary of PAD for iris recognition
[13].

3 Experimental data

A part of the existing multimodal biometric database, created by these authors
in the past, containing eye and periocular images was used in this paper [10].
Photographs have been collected in visible light using Huawei Mate S (13 Mpx,
£/2.0). Data acquisition from 53 people (20 women and 33 men), aged from 14 to

! Available for download at http://zbum.ia.pw.edu.pl/EN/node/46.
2This dataset of attack iris samples is available to researchers at http://zbum.ia.
pw.edu.pl/EN/node/46.
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71 years, has been divided into two measurement sessions. Example photographs
from this database are shown in Fig. 1. This dataset contains both the high
quality (referred to as HQ) and low quality (LQ) images, with HQ images being
taken with flash, and LQ images being taken without flash illumination.

Fig. 1. From left to right: Example same-eye images from the smartphone camera
acquired with flash (HQ image), without flash (LQ image), attack screen presentations
for the same samples (with and without flash), taken with the same smartphone camera
as original images.

Part of this study was to extend the live iris dataset with a complementary set
of attack iris samples. For this purpose, a popular (in visible light iris recognition)
way of creating artificial data was used: displaying photos on the screen of a
phone and then taking photographs of the screen. The device used for taking
pictures of artifacts was the same device as the one used to collect real samples
in the original study. A total of 900 attack representations were created.

The iris images were cropped in accordance with the ISO/EIC 19794-6:2011,
up to a resolution of 640x480 pixels. Color preprocessing was applied to come
up with five different representations, the first two including RGB, unmodified
images straight from the sensor (Fig. 2, top row), R images created by extracting
the red channel of the RGB color space (Fig. 2, second row), S images created
by extracting the saturation component from the HSV representation (Fig. 2,
third row), and GRAY images (Fig. 2, bottom row), grayscale created from the
RGB image.

4 Methodology

4.1 Presentation Attack Detection methods

For the purpose of mitigating screen presentation attacks, we have implemented
two PAD methods, both requiring only a single, static iris image, and both not
requiring any exhaustive computations. The first method relies on the statistical
features of an image, whereas the second one utilizes an LBP-based texture
descriptor.

Statistical image features: In this method, seven statistical characteristics of
the image were calculated: average image intensity (u), variance of the pixels

M GG —w)? MOSN TG —p)*
value (o), skewness (Z":1 ]zwf.}l.gﬁ/;J) “) ), kurtosis (Z’:1 z]{/[:_}v(_lg(;j) “) ), the

10th, 50th, and 90th percentile of the pixels value.
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GRAY — images after conversion to gmyscale

Fig. 2. Examples of real (left) and fake (right) irises of brown/hazel, green and
blue/gray eyes.

Local Binary Patterns: LBP is one of the most popular texture descriptors,
which involves the analysis of a pixel in relation to its surroundings [3]. The
value of each pixel is compared to the value of the central pixel, and the binary
code created in this way is converted into a number in the decimal system:
LBPy r(Ic) = 25:1 s(I, —Ic)2" ! where N, R are the number of surrounding
neighbors and the radius, respectively, I denotes the central pixel, I denotes
the n-th pixel from neighborhood of central pixel, and

1 ifl,—Ic>0
I, —Ic) = - 1
s( c) {0 otherwise (1)

The obtained values are represented as histograms: one for the entire im-
age, and individual histograms created for each piece of the image divided into
100 parts. In addition, we implemented version of the LBP algorithm resistant
to rotation (uniform LBP code) [3]. The best results were obtained for the sur-
roundings of eight neighbors analyzing the whole picture. In this way, the feature
vectors counted 59 elements.

Features selection and classification: Features obtained from each method
were then sorted by relevance using principal component analysis (PCA), the
influence of subsequent features on attack detection accuracy was examined,
and an optimal number of features is determined, Fig. 3. Table 1 summarizes the
optimal number of LBP features for each type of image. The binary classification
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Fig. 3. EER as a function of the number of successive statistical (top row) and LBP
(bottom row) features ordered according to the PCA. Average (solid dark blue lines)
and standard deviation obtained from 20 training/testing data splits (light blue shades)
are shown.

was carried out using a support vector machine (SVM) classifier with a radial
basis function kernel. The data were divided into subject-disjoint training and
testing subsets in a ratio of 80 : 20.

4.2 Iris recognition: OSIRIS

For the purpose of iris recognition, the Open Source for IRIS (OSIRIS) is em-
ployed [5]. The academic-based software was developed as a part of the BioSecure
project and implements the original Daugman concept, including segmentation
of the iris and its normalization by transformation from cartesian to polar co-
ordinates using the rubber sheet model. The encoding of the iris features is per-
formed using phase quantization of a response of Gabor filtering outcomes, and
then comparing the binary codes using the XOR operation to obtain the nor-
malized Hamming distance. Values close to zero should indicate data from the
same iris, whereas typical results for different irises comparisons oscillate around
0.5 (usually they are concentrated in the range of 0.4-0.45 because of shifting of
the iris codes).

OSIRIS segmentation: The first stage of iris image processing is location and
segmentation, with the exception of image noise, among others in the form of
eyelids, eyelashes, reflections, shadows. The result is a binary mask, which deter-
mines which pixels belong to the iris. In the original OSIRIS, this is performed
by a circular Hough transform used to roughly approximate the circles repre-
senting the edges of the iris, and then employing active contours algorithm to
exclude noisy regions. Examples of segmentation results can be seen in Fig. 4,
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Optimal no.

Method of features Image type APCER [%] BPCER [%]|| EERpap [%]
Statistical 7 R 1.89 4.22 5.00
features 6 S 5.94 4.84 4.95

7 GRAY 3.92 4.53 4.97
LBP 20 R 0.22 0.00 0.10

23 S 0.11 0.44 0.28

17 GRAY 0.44 0.00 0.22

Table 1. APCER, BPCER, EERpap for two PAD methods for the optimal no. of
parameters.

top row.

DCNN-based segmentation: Due to the type of photos that is different
from NIR images for which OSIRIS was originally built, a second segmenta-
tion method is also used, namely a model based on the SegNet architecture
retrained with iris images taken in infrared light, as well as images representing
only the R channel of the RGB color scheme, using the implementation from [6].

5 Experiments and results

Stage 1: Presentation Attack Detection

The LBP descriptor and seven statistical image characteristics were used as a
PAD component put in front of the iris recognition pipeline. In both cases, the
features were sorted from the most important, and then combined in the order
given and treated as a feature vector, which was then classified using a SVM
(Fig. 3). The data were divided with 20 subject-disjoint, 80/20 training and test
sets. In this part of the analysis, we used iris representations in form of R, S and
GRAY images. Tab. 1 presents the optimal number of parameters for each image
type and the results of the binary classification in the form of the error metrics
as recommended by the ISO/IEC standard on presentation attack detection.

Both the methods based on texture analysis and statistical image features ob-
tained good results, with LBP allowing for almost perfect discrimination between
bona-fide and attack samples. In the case of the R channel image representation,
the EERpap was as low as 0.11%. Since the EERp ap was considered as a min-
imization target for parameter choice, the APCER here is larger than BPCER,
however, this can be tuned by moving the acceptance threshold in the desired
direction. Analysis of the statistical features of the image gave higher errors,
but a downward trend can be seen here, therefore adding other image features
could also reduce these errors. In each case the most discriminative information
seems to be represented in the red channel R. The APCER and BPCER
errors concern LQ images, for the HQ both errors are 0%, and both
the detection rate of attack and bona fide samples, is perfect.
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Stage 2: Iris recognition

In this Section we evaluate the impact that attack samples can have on recog-
nition accuracy. The first stage of the OSIRIS recognition pipeline consists of
image segmentation. The original OSIRIS segmentation repeatedly encountered
problems with correctly segmenting the images, Fig. 4.

4 ////‘{//"“’ﬂ\jh »

RTEET RS
Fig. 4. Examples of incorrect segmentation from the OSIRIS algorithm (left) and cor-
responding results for DCNN-based approach (right) for the same samples. The iris
should ideally be located within the two green circles, and the red regions should de-
note non-iris portions that lay within these circles.

Since most of these errors will likely lead to erratic iris verification, the seg-
mentation phase has to be altered or replaced to be able to test the effectiveness
of the iris feature representation, encoding, and matching of OSIRIS for iris
images taken in visible light. The original segmentation was therefore replaced
with a solution based on convolutional neural network and the Hough transform,
cf. Sec. 4.2, which allowed for close-to-perfect segmentation of most samples, cf.
Fig. 4, bottom row.

Image Type R S GRAY
Without PAD component

HQ 29.15 (£0.66) 27.55 (£0.54) 6.86 (£0.29)
LQ 38.71 (£0.48) 46.28 (£0.30) 37.14 (£0.58)
HQ:LQ 40.40 (£0.48) 47.52 (£0.24) 53.45 (£0.53)
Including PAD component

HQ 7.68 (£0.58) 26.02 (£0.47) 6.57 (£0.29)
LQ 18.09 (£0.41) 43.77 (£0.33) 21.36 (£0.57)
HQ:LQ 20.24 (£0.42) 47.48 (£0.23) 47.83 (£0.53)

Table 2. Equal Error Rates and their standard deviations obtained using OSIRIS for
three different image representation: R, S, and GRAY, for higher- and lower quality
images and between different qualities, both without and with the PAD component.

After the segmentation stage, the OSIRIS method was employed to calcu-
late all possible comparison scores between within-class image pairs (genuine),
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between-class image pairs (impostors), and between real samples and their corre-
sponding attack representations (real vs fake). This was done for all three image
types (R, S, and GRAY), as well as for high quality images only, low quality
images only, and between images of different quality (denoted as HQ, LQ, and
HQ:LQ, respectively), leading to a total of 9 experiments without, and 9 ex-
periments with the PAD component included. Comparison scores distributions
are presented in Fig. 5, whereas the obtained average Equal Error Rates for all
18 experiments are summarized in Tab. 2. In the experiments run without the
PAD method, all comparisons with attack samples are considered as impostor
comparisons.
Conclusions drawn from comparison score distributions plotted in Fig. 5:

1) the best separation between genuine and impostor comparisons can be found
when matching high quality (HQ) images representing the R channel and the
grayscale (GRAY) conversion of the RGB image,

2) both the low quality (LQ) and mixed quality (HQ:LQ) comparisons do
not offer distribution separation that would enable reasonably accurate iris
recognition,

3) using the R channel, bonafide-vs-attack scores overlap with those ob-
tained from genuine comparisons, thus making the PAD compo-
nent crucial (including it improves the EER from almost 30% to 7.68%),

4) but, surprisingly, for grayscale (GRAY) images the same scores overlap with
the impostor scores distribution (and including PAD in this case improves
the EER from 6.86% to 6.57%).

The best results EER-wise were obtained for high-quality images, in the rep-
resentations of the R channel and grayscale conversion of the RGB color space,
which gave EER=7.68% and EER=6.57%, respectively. For lower-quality im-
ages, R images yielded better results, giving (still unacceptable) EER of 18.13%,
compared against 21.36% obtained for the GRAY images and EER=43.77% for
S images. For mixed quality database, only the R channel allows for a non-
random recognition accuracy with EER=20.24%, whereas S and GRAY images
yield EERs close to 50%.

6 Conclusions

This paper offers an open-source presentation attack detection method designed
to detect attack representations of iris samples collected with a mobile phone
in visible light. LBP-derived features allow for a nearly perfect attack detection
accuracy with APCER=0.11% and BPCER=0% with a dataset of attack iris
representations consisting of irises displayed on a screen, which was created for
this study.

By testing the proposed PAD method coupled with the OSIRIS recognition
pipeline with DCNN-based image segmentation stage, we show that by employ-
ing the R channel of the RGB color space, recognition accuracy of 7.68% EER
can be achieved, compared to EER=30% obtained prior to the inclusion of a
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Fig.5. Score distributions obtained for HQ images only (left), for LQ images only
(middle), and between HQ and LQ images (right). Genuine scores (blue), impostor
scores (red), and scores between real samples and their fake representations (yellow)
are shown.

PAD component. Surprisingly, we have found the grayscale representation of
the RGB image color space to offer some kind of resilience to this particular
attack, as comparison scores obtained from matching real iris samples and their
fake counterparts were similar to the scores obtained from matching impostor
image pairs. Here, the proposed PAD allowed for a moderate reduction of EER
from 6.86% to 6.57%.

This paper follows the guidelines for research reproducibility by making the
dataset of attack iris representations, as well as source codes for the PAD meth-
ods proposed, open-sourced to serve as a benchmark for visible light iris presen-
tation attack detection, especially with respect to mobile applications.
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