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Pupil dynamics for iris liveness detection
Adam Czajka, Senior Member, IEEE

Abstract—The primary objective of this paper is to propose a
complete methodology for eye liveness detection based on pupil
dynamics. This method may serve as a component of presentation
attack detection in iris recognition systems, making them more
secure. Due to a lack of public databases that would support this
research, we have built our own iris capture device to register
pupil size changes under visible light stimuli, and registered 204
observations for 26 subjects (52 different irides), each containing
750 iris images taken every 40 ms. Each measurement registers
the spontaneous pupil oscillations and its reaction after a sudden
increase of the intensity of visible light. The Kohn and Clynes
pupil dynamics model is used to describe these changes; hence we
convert each observation into a feature space defined by model
parameters. To answer the question whether the eye is alive (that
is, if it reacts to light changes as a human eye) or the presentation
is suspicious (that is, if it reacts oddly or no reaction is observed),
we use linear and non-linear Support Vector Machines to classify
natural reaction and spontaneous oscillations, simultaneously
investigating the goodness of fit to reject bad modeling. Our
experiments show that this approach can achieve a perfect
performance for the data we have collected: all normal reactions
are correctly differentiated from spontaneous oscillations. We
investigated the shortest observation time required to model the
pupil reaction, and found that time periods not exceeding 3
seconds are adequate to offer a perfect performance.

Index Terms—Liveness detection, pupil dynamics, iris recog-
nition, presentation attack detection, biometrics.

I. INTRODUCTION

FOR more than a decade liveness detection has been an
important element of international discussion on bio-

metric security. According to ISO/IEC, it concerns ’detec-
tion of anatomical characteristics or involuntary or voluntary
reactions, in order to determine if a biometric sample is
being captured from a living subject present at the point of
capture’ [1]. The ability to check the liveness is crucial to any
biometric sensor. Even its name, biometric, is the synonym
for dealing with living and authentic biological traits, and not
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with nonliving artifacts. Once the biometric sensor accepts
artifacts or non-living body parts, the entire system deploying
such sensor becomes moot.

Liveness detection refers to the detection of living symp-
toms, and hence is a special case of a wider class of techniques
aiming at detection of any presentation attack. ISO/IEC defines
the presentation attack as ’presentation of an artifact or human
characteristic to the biometric capture subsystem in a fashion
that could interfere with the intended policy of the biometric
system’. This means that any subversive action (i.e., with the
intention to subvert a biometric system) should be detected as
a presentation attack. However, the intention of the attacker
cannot be inferred. Hence the presentation attack becomes
a very broad-ranging field that includes presentation of fake
objects, as well as cadaver parts, incongruous or coerced
presentations, and even zero-effort impostor attempts. This
unknown intention also causes false alarms by classifying
some suspicious actions as potential presentation attacks,
e.g., non-conformant presentation due to illness, fatigue or
presentation of artificial objects for cosmetic or health reasons.
This complicates the classification of attacks and stimulates
on-going scientific discussion in the field of how to efficiently
deal with presentation attack detection (abbreviated further as
PAD).

In this work we focus on iris liveness detection, i.e., identi-
fication of liveness symptoms that could prove the authenticity
of the eye and the willingness of the subject to be registered by
the sensor. Instead of more commonly used static properties of
the eye or its tissue, we use dynamics of the pupil registered
under visible light stimuli. Since the pupil reacts involuntarily
when the light intensity changes, it is difficult to conceal
this phenomenon. As will be shown in the paper, the pupil
dynamics are not trivial, making it difficult to mimic them
for artificial objects. In our tests we decided not to use static
objects such as iris paper printouts or patterned contact lenses,
since in such cases we would be assured of success (static
objects do not present significant dynamics, apart from some
measurement noise, and thus are easily recognizable when
dynamics is the key). Instead, to assess the proposed method
performance, we classify spontaneous pupil oscillations (often
called hippus) and normal pupil reactions to a positive surge of
visible light, thus making the tests more realistic. To our best
knowledge, this is the only work that employs pupil dynamics
for liveness detection and which is evaluated on dynamic, real
objects rather than static artifacts.

The paper is organized as follow: Section II gives a brief
summary of error metrics used in the paper. Section III
quotes and categorizes the most important past work on PAD
related to iris recognition. Section IV describes a database
of eye movies collected for this research. In Section V we
provide theoretical backgrounds of the data pre-processing and
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modeling of pupil dynamics. Section VI presents experimental
results that are discussed in Section VII.

II. ERROR METRICS USED

False rejections and false acceptances are common errors
in biometrics. These refer to mistakenly rejecting or accepting
claimed identity. In theory, we could use the same nomencla-
ture in the context of liveness detection by a simple change
of the claim from ’identity’ to ’liveness’. However, an inter-
national discussion in this field suggests distinguishing error
estimators related to presentation attack detection from those
describing the biometric recognition. We thus follow the very
last ISO/IEC proposal [1] and describe system performance at
the PAD level by the following estimators:

a) Attack Presentation Classification Error Rate
(APCER): proportion of attack presentations that were
incorrectly classified as authentic presentations.

b) Normal Presentation Classification Error Rate
(NPCER): proportion of authentic presentations incorrectly
classified as attacks.

Occasionally, we also need a specific system operating
point, describing jointly the APCER and NPCER:

c) Equal Error Rate (EER): value of APCER and
NPCER when they are equal (analogous to the recognition
performance analysis which employs equality of false rejec-
tions and false acceptances in definition of EER).

III. PRESENTATION ATTACK DETECTION IN IRIS
RECOGNITION: PAST WORK

A. First demonstrations of vulnerabilities

Fifteen years have passed since Daugman’s first proposal
on how the iris recognition system can be spoofed by the
eye printout [2]. Three years later, this idea was proved due
to the first security evaluation of commercial iris recognition
systems by Thalheim et al. [3]. During these tests simple iris
printouts with a hole cut in place of the pupil were used.
This gimmick made it possible to stultify an iris detection
method implemented in the tested device. Disjoint frequency
ranges employed in the tested iris coding (low frequencies) and
in the printing process (high frequencies) made the printing
artifacts ’invisible’ to the iris feature extraction processes. This
allowed them to print, present and positively verify a given
iris. Pioneer research by Thalheim et al. stimulated others
presenting their own security evaluation of additional, previ-
ously untested hardware, and again showing alarming lack of
effective countermeasures in the commercial equipment [4],
[5].

B. Scientific papers

From these first findings we observe a constant full bloom of
PAD methods, characterized by a different sophistication level
and kind of signals that may be analyzed when observing the
eye. To summarize the current state of the art, we introduce
four categories of the PAD methods characterized by way of
measurement and dynamics of the observed object: passive or

active measurement of a static or dynamic object. In the next
paragraphs we provide the most prominent research results for
each category.

Passive measurement of a static object. Methods of
this kind employ a still image able to reveal only static
eye features. No additional active measurement steps are
performed. Usually the same picture as used in the recognition
is employed for liveness detection. These approaches are still
very attractive because no additional investment is made in
iris capture hardware, even at the cost of limited reliability.
The pioneer idea comes from Daugman [2], who noticed
that the amplitude spectrum of the printed irides contains
fake patterns, as opposed to smooth spectra obtained for
authentic eyes. The first proposal on how to automatically
find these ’fake frequencies’ within the amplitude spectrum
was probably made by Pacut and Czajka [5], and involved
follow-up investigations [6], [7] that finally reported correct
recognition of more than 95% of iris printouts (when no false
rejections of alive samples were encountered).

Wei et al. [8] are probably the first authors to analyze three
iris image properties to detect a patterned contact lens: image
sharpness, Gabor-based filtering and second-order iris region
statistics. The authors report good performance for the latter
two approaches (98.3% and 100% of correct recognition rate,
correspondingly), although admitting their high dependency
on the printed contact lens pattern type. The small number
(20) of artificial irides used should be taken into account
when generalizing these results. He et al. [9] use wavelet
packets analysis to calculate the liveness features classified
by SVM (Support Vector Machine) with radial basis kernel.
The authors report correct recognition of iris paper printouts
even if intentionally blurred due to motion. He et al. [10]
employ AdaBoost learning to select the best LBP-based (Local
Binary Patterns) liveness features and Gaussian kernel density
estimation is used to generalize the AdaBoost classifier. The
authors report 99.33% correct recognition of fakes at the alive
rejection rate of 2.64%, calculated for the evaluation database
gathering 300 images of 20 different kinds of contact lenses,
a few printouts and glassy eyes. Zhang et al. [11] use SVM to
classify authentic iris images and patterned contact lens within
the LBP feature space. Authors report CCR=99.14% (correct
classification rate) calculated for 55 different types of contacts
worn by 72 subjects and averaged through four different
capture devices. This promising CCR drops to 88.05% in
cross-validation scenario (training and testing performed on
samples captured by different cameras).

Those promising, yet single image, properties were later
used jointly to form multidimensional, image quality-based
liveness indicators. Galbally et al. [12] apply feature selection
methodology to find the best combination of liveness features
among 22 proposed simple iris geometrical or frequency de-
scriptors. Although they report perfect recognition of printouts
and alive eyes, this may be specific to the low quality of
printouts applied, as this result was based solely on segmenta-
tion outcomes (information on occlusions fused with pupil-to-
iris radii ratio). We should rather expect the fake samples to
result in correct segmentation, if they are used in real attacks.
Nevertheless, the idea of merging different quality covariates
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has high potential and it was applied later by Galbally et
al. [13] along with quadratic discriminant analysis to detect
99.75% of iris printouts, simultaneously falsely rejecting 4.2%
of the authentic eyes. They selected 25 quality measures that
are complementary in detecting different attack types and that
could be calculated efficiently in real time. This approach was
also able to detect 99.2% synthetic irides at NPCER=3.4%.

Active measurement of static object. Methods of this kind
realize the active measurement (besides the normal process
of iris recognition) revealing some structural properties of
the eye, yet not using eye dynamics. A typical example is
detection of Purkinje reflections, i.e., specular spots generated
by illumination at inner and outer boundaries of the cornea and
the eye lens. The idea originally proposed by Daugman [2] had
been elaborated later by Lee et al. [14], who use two colli-
mated NIR light sources (additional to the illuminants used for
iris recognition) to generate and measure the Purkinje spots.
Experiments done for eye images of 30 persons (including
10 wearing glasses and 10 wearing contact lens), 10 samples
of paper printouts, 2 samples of printed contact lens, and 2
samples of 3D eye models lead to promising EER=0.33%.
One should note that detection of Purkinje reflections requires
high image sharpness, far better than normally required by iris
recognition methods.

Connell et al. [15] use the fact that the authentic iris (in low
resolution) is roughly flat, in contrary to a printed contact lens
that reveals a convex shape. Hence, the authors use a structured
light (popular in 3D facial imaging) generated by a miniature
projector to capture the three-dimensional properties of the
anterior part of the eyeball. This approach tested for images
captured for only one subject and six different contact lenses
presented perfect recognition of fakes.

When zooming in on the iris to see its muscle fibers,
we end up with a structure that is no longer flat. When
observed in higher resolution the trabeculae generate shadows
when illuminated by light from different directions. Such
shadows should not be present when smooth imitations (like
paper printouts) are observed, hence some researchers use
this method to distinguish flat artifacts from ragged, alive
iris muscle. The first approach known to us on how to
utilize the three dimensionality of the iris to determine its
authenticity comes from Lee et al. [16]. The authors used
wavelet decomposition to find 3D liveness features classified
by SVM. Reported EER=0.33% was achieved for 600 live
samples collected for 60 volunteers (some of them wearing
glasses or contact lens) and for 600 fake samples prepared for
different artifact types (printouts, photographs, printouts with
contact lens, artificial images made from silicon or acrylic,
and patterned contact lens). Hughes et al. [17] noticed that
wearing patterned contact lens makes the observed iris pattern
more convex (i.e., lying on the lens surface), in contrast with
the unobstructed, authentic iris, whose pattern lies roughly on
a plane. Hence, they transformed a liveness detection problem
into a problem of classifying the surface shape observed within
the iris region. The authors captured stereo images of the iris in
visible light for 4 persons, and additionally asked two of those
four volunteers to wear contact lens (transparent and patterned)
when capturing the images. They report perfect recognition of

irides not equipped with contact lenses (or when transparent
lenses are worn) from those wearing patterned contacts.

Park et al. [18] propose an interesting solution by using a
few multi-spectral iris images instead of a typically applied
single image taken in near infrared. The authors used a
specialized tunable crystal filter offering very selective (10 nm
band) illumination starting from 650 nm up to 1100 nm. The
image used in recognition results in a gradient-based image
fusion and presents no iris structure if the image is a printout,
unlike authentic images providing useful iris features. The
authors claim perfect performance, yet tests are shown for
4 different eyes only. Lee et al. [19] also use differences in
multi-spectral light absorption by the eye tissues. The authors
first calculate the ratio of iris-to-sclera image intensity (in pre-
selected iris and sclera small regions). Since both the iris and
the sclera have different light absorption properties depending
on the wavelength of the illuminating light, this ratio differs
when the light wavelength changes. Indeed, one may judge the
authenticity of the sample by calculating the quotient of these
ratios for two different illuminant wavelengths (750 nm and
850 nm are used in the paper). The authors demonstrate zero
APCER and a small NPCER=0.28% for 2800 authentic iris
images, 400 images of paper printouts and 30 images of plastic
eyes. Not surprisingly however, this method falsely accepts
40% of colored contact lenses due to their transparency to the
multi-spectral light applied in this work.

Passive measurement of dynamic object. In this group
we detect dynamic properties of the measured object, yet
without its stimulation. A natural example is detection of
hippus, i.e., spontaneous pupil size oscillations [2]. Although
the idea of using hippus for liveness detection has existed for
years and is often cited in papers, it is difficult to find reliable
implementations to date. Additionally Pacut et al. suggest
(after observing their own measurements) that the visibility of
hippus is subject to the individual, and hence its reliability may
be limited when applied to larger populations. A successful
deployment of the hippus is shown by Fabiola et al. [20],
however in the context of user authentication and not in
liveness detection. EER=0.23% achieved by the authors when
analyzing hippus in 50 persons suggests that the spontaneous
movements of the pupil may deliver individual features. When
added to the iris biometric template, they could serve as
liveness indicators. The paper, however, does not include
any tests with fake eyes to prove this hypothesis. If the iris
image contains also the eyelids, one may adapt a spontaneous
eye blinking detection, popular in face recognition and face
liveness detection. Reported accuracy of blinks recognition is
high (98% claimed by Cohn et al. [21] for 10 volunteers,
or 88.8% for 20 subjects reported by Pan et al. [22]). One
should note, however, that spontaneous blinks happen every
few seconds; they are irregular and their frequency is subject
dependent. Hence, when iris capture time plays an important
role, detection of stimulated blinks (instead of spontaneous)
seems to be a more adequate approach.

Active measurement of dynamic object. The last group of
methods comprises those stimulating the object and analyzing
its dynamics. The human eye delivers at least two types of
dynamic features: those related to the entire eyeball and those
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describing stimulated changes in pupil size. Komogortsev et
al. observe the eye’s horizontal saccade trajectories to differen-
tiate authentic eyeballs and simulated behavior of mechanical
replicas. The stimulus is a jumping point that had to be
followed by 32 volunteers participating in the experiment. The
smallest EER=5% is achieved when the eye movement model
is unknown to the attacker, and EER=20% is declared by the
authors when the occulomotor plant characteristics are avail-
able to imitate the eye’s saccade. Some researchers employ
the iris muscle deformations under changing illumination, like
Kanematsu et al. [23] who calculate the iris image brightness
variations after the light stimuli in the predefined iris regions.
They report perfect recognition of alive irides and a few paper
printouts. Puhan et al. [24] calculate the differences in iris
texture for dilated and constricted irides, claiming that these
differences should be large for an authentic eye and small for a
printed contact lens. This claim, although correct in principle,
has no proof of concept in the paper since the authors show
results for two authentic eyes only and not for artifacts.

Scientific literature often mentions an attack with the use of
LCD panels as the candidate for successful mimicking of eye
dynamics, although no successful realization of this forgery
is known so far. The iris acquisition equipment illuminates
the eye by near infrared light (typical operating wavelength
starts at 700 nm and ends at 900, as recommended by ISO/IEC
29794-6) and implements optical filters to cut the light outside
this range. On the other hand, the LCD displays aim at
presenting the contents to the user, and hence must operate
in visible light (with wavelength not exceeding 700 nm). This
causes the iris recognition cameras to be ’blind’ to what is
displayed by the LCD. Therefore this popular attack idea is
impractical with off-the-shelf LCD displays. We do not know
any LCD operating in near infrared light that could be used
to play an eye movie.

One should note that no pupil dynamics are calculated in
the above studies. Although the obvious idea to use pupil
dynamic features for liveness detection has existed for years,
there is only a small amount of research presenting proof of
this concept along with adequate experimental results. Pacut
et al. [5] used a dynamic pupil reaction model and neural
classifier to perfectly recognize the authentic eyes and the
iris printouts based on an image sequence database collected
for 29 volunteers and more than 500 paper artifacts. At the
same time, the authors applied for a patent in Poland [25],
which was later extended to the USA [26]. Since they used
the iris printouts in the research, which can be recognized
by easier approaches, the potential of the method was neither
appreciated nor presented. Czajka extended this study to show
how this method recognizes the odd (or no) reactions of the
eye [27], and this paper gives a thorough description of these
findings.

C. Supporting activities

Besides the scientific endeavors, it is worth noting some
other initiatives related to iris liveness detection. Clarkson
University (USA), University of Notre Dame (USA), and
Warsaw University of Technology (Poland) organized the first

international iris liveness competition in 2013 [28]. This com-
petition was a follow-up to three earlier liveness competitions,
all devoted to fingerprint biometrics. The competition used
paper iris printouts (815 images in total) and printed contact
lenses (2240 images in total). Approximately 62% of contact
lens images and 25% of paper printout images have been
offered to participants as a training set, and the remaining
data were used in evaluation of the delivered methods. Three
universities decided to send their algorithms. Competition
results demonstrate some interesting phenomena. First, it is
clear that patterned contact lenses are much harder to detect
when compared to recognition of paper printouts (0.65% of
paper printout acceptance vs. 9.32% on average of printed
contact lens acceptance achieved for the winning method).
Second, the competition results show a clear dissonance be-
tween laboratory results presented by most of the scientific
papers (typically showing perfect, or almost perfect recogni-
tion of fakes and alive samples) and third-party evaluation
reporting average classification errors at a 10% level for a
winning solution. These findings reinforce the importance of
independent evaluations.

One may be also interested in TABULA RASA [29], a
European project that is solely devoted to liveness detection.
Some of the impressive project outcomes are devoted to
iris recognition, e.g., already cited deployment of iris image
quality features in artifacts detection [12]. Biometrics Institute
is an initiator of the Biometric Vulnerability Assessment
Expert Group [30], an international group of experts that aims
at raising the awareness about the importance of biometric
vulnerability assessments and exchanging subject-related ex-
periences. ISO/IEC JTC sub-committee No. 37 (Biometrics)
is also about to issue a separate international standard devoted
in full to presentation attack detection. These examples show
that liveness detection in biometrics is not a fully solved issue
or the results obtained to date do not satisfy both science and
industry.

IV. DATABASE OF IRIS MOVIES

A. Collection stand

To our best knowledge, there are no public collections of iris
movies that would allow for this study of pupil dynamics. We
decided to build suitable measuring equipment and gather our
own set of eye movies captured in near infrared light. The core
of the collection stand is the IrisCUBE camera [31] embedding
The Imaging Source DMK 4002-IR b/w camera equipped with
a SONY ICX249AL 1/2” CCD interline sensor of increased
infrared sensitivity. The scene was illuminated by two near
infrared illuminants (λ = 850 nm) placed horizontally and
equidistantly to the lens. Our equipment applies a near infrared
filter to cut any light with a wavelength lower than 800 nm.
The IrisCUBE camera can capture 25 iris images per second,
and the image quality significantly exceeds minimal ISO/IEC
19794-6 and ISO/IEC 29794-6 recommendations related to
those aspects that are independent of the imaged subject. Since
we wanted to guarantee repeatable capture conditions in the
entire experiment, we enclosed the camera in a large, shaded
box with a place where the subject positions his or her eyes
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for acquisition of the image. We used visible LEDs, embedded
into the frontal part of the camera case to help the user in
positioning the head, as a visible light stimulus. This con-
figuration guarantees the fixed position of the subject’s head
in each attempt and a stable distance between the subject’s
head and the camera (approximately 30 cm). It allows us to
measure the pupil’s reaction in complete darkness (regardless
of external lighting conditions) as well as during the visible
light step stimulation. However, one should be aware that pupil
reaction may be less distinct when the eye is observed under
bright ambient light (due to higher pupil constriction before
the stimuli is applied).

B. Database statistics

We collected images for 52 distinct irides of 26 subjects. For
50 irides we captured 4 movies, and only 2 movies for a single
person, making for 204 eye movies in total. Each movie lasts
30 seconds and presents spontaneous oscillations of the pupil
size (first 15 seconds) and reaction to a step increase of light
intensity (next 5 seconds), as well as the reaction to a negative
step change in the illumination (last ten seconds). Since we
capture 25 frames per second, the database volume sums up to
204×30×25 = 153 000 iris images illustrating pupil dilation
and constriction processes. Figure 1 presents example frames
and illustrates the moments of visible LED set-on and set-off.

C. Representation of actual and odd pupil reactions

In all research devoted to presentation attack detection we
have a common difficulty in finding the classification function
that divides our liveness feature space into two subspaces:
authentic and fake. Since we typically build these classifiers
by some learning procedures, we need samples representing
those classes. This, unfortunately, leads us to methods that
are specific to some kinds of fake objects. Generalization is
almost impossible since we cannot predict the fantasy of the
counterfeiters. In particular, past work summarized in Sec. III
is devoted to detection of static artifacts, typically iris print-
outs, contact lenses or eye prosthetic models. Prior application
of pupil dynamics for presentation attack detection [5], [26],
demonstrating perfect performance, was also evaluated for
paper printouts, but in such cases we should expect perfect
performance, since static objects demonstrate no dynamics.

In this work we go beyond this limitation and develop the
method that may recognize correct pupil dynamics and reject
any behavior that mimics real pupil movements, or presents
some odd, unexpected oscillations. In this research we decided
to analyze the alive eyes only and to treat the spontaneous
oscillations of the pupil as odd reactions to hypothetical
(nonexistent in this case) light stimuli. This approach perfectly
corresponds to what we understand under the ’liveness’ term,
namely the detection of vital symptoms of the analyzed
object. Only an alive and authentic eye should demonstrate
correct dynamics specific to a human organ. If after a sudden
visible light impulse we observe nothing but hippus, this may
denote that we observe a non-living eye. To organize our
data according to our assumptions, we consequently crop two
five-second sub-movies from each eye movie in the database.

The first cropped sub-movie, representing odd eye reaction,
starts when the measurement takes off, and ends after the fifth
second of the measurement. The second sub-movie starts in
the sixteenth second (exactly when the eye is stimulated by
a visible light) and finishes in the twentieth second (exactly
when the visible light is set off), see Fig. 1. This results in
204 movies lasting 5 seconds and representing odd reactions,
and 204 movies representing expected pupil dynamics, also 5
seconds long.

We should be aware that the spontaneous oscillations of
the pupil observed in complete darkness, or in a very bright
ambient light, may have lower amplitude when compared to
oscillations captured under a regular ambient light. The latter
case allows the pupil to constrict and dilate with no distinct
limitations, while complete darkness or a very bright ambient
light causes the pupil to be already excessively constricted or
dilated, hence allowing for only a limited change in its size.

V. RECOGNITION OF PUPIL DYNAMICS

A. Data pre-processing

1) Pupil detection, segmentation and calculation of its size:
Pupil dynamics is expressed by changes of its size. The
pupil size is however an imprecise and general dimension
that may be calculated in various ways. In this work we
decided to use the most common, circular approximation of
its – possibly irregular – shape. This is done intentionally due
to three factors: a) high speed of circular segmentation, b)
commonness of circular modeling in already deployed iris
recognition methods, and c) unimportance of non circular
deviations when describing the dynamics.

Having no ground truth related to iris location, we detect
and localize the pupil in each frame independently. While
detection refers to a statement of whether the pupil exists
within the frame, the localization delivers its position. To
localize a boundary between the pupil and the iris, we applied
a Hough transform operating on directional image (estimation
of an image gradient delivering both a gradient value and its
direction). We parametrized the transform to make it sensitive
to dark circular shapes and almost unresponsive to other dark
shapes and light circles, such as specular reflections. Use of
gradient and sensitivity to circular shapes makes this method
surprisingly robust even if the pupil is 50% covered by eyelids.
Consequently each eye movie is transformed into a time series
of pupil radii, Fig. 1. We do not use gradient values that
do not exceed a minimum threshold (set experimentally to
the hardware setup that we employed). If there is no single
gradient value exceeding the threshold, the method reports that
no pupil could be detected. The latter realizes pupil detection,
and helps to identify time moments when the eye is completely
covered by eyelids.

2) Artifacts removal: Raw sequences of pupil radii are
not perfect due to segmentation inaccuracy. In general, we
encounter two kinds of disruptions: a) pupil detection errors
(typically due to blinks fully covering the eye), and b) pupil
segmentation noise (typically due to blinks in which the pupil
is partially covered, eye motion, off-axis gaze, highly non-
circular pupil shape that results in small oscillations of the
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Fig. 1. Pupil size (black dots) measured automatically during a single experiment under the light stimuli (blue solid line). Note that capture of a real object
results in a non-ideal sequence of pupil size due to blinks (black dots departing from the expected sequence), eye closure (red dots of zero ordinate denoting
that no pupil is detected), or fluctuations of the segmentation process (revealing as a ’noise’ in the sequence). Illustrating exemplars are shown at the top and
linked to the corresponding moments of the sequence.

estimated pupil size, or simply algorithm mistakes). Errors of
the first kind are identified by the pupil detection process.
Those erroneous points can be easily omitted when modeling
the pupil dynamics (marked as red dots lying on the horizontal
axis in Fig. 1). However, the segmentation errors can be
identified only to some extent when the pupil radius diverges
significantly when compared to its neighboring values. These
sudden collapses in pupil radius are mostly caused by partial
blinks and – due to the speed of blink relative to 25 frames
per second – they typically occupy several (or even isolated)
values. We thus applied a median filtering with one second
horizon (i.e., 25 frames) applied as a sliding window.

B. Modeling of pupil dynamics

Light intensity surges generate obvious pupil constriction
and dilation. Kohn and Clynes [32] noticed an asymmetry in
pupil response depending on whether the flash is positive (from
darkness to brightness) or negative, and proposed a reaction
model that can be graphically envisioned as a two-channel
transfer function of a complex argument s, Fig. 2.

Fig. 2. Pupil dynamics model deployed in this work and derived from an
original proposal of Kohn and Clynes [32]. Graph reprinted from [26].

The upper channel consists of a second order inertia with
time constants T1 and T2, and a lag element characterized by
τ1. It models a transient behavior of the pupil only for positive

light stimuli, what is guaranteed by a nonlinear function placed
after the lag element and cutting down the channel response for
negative stimuli. The channel gain is controlled by Kr. In turn,
the lower channel is responsible for modeling long-term and
persistent changes in pupil size, and answers by setting a new
pupil radius after both the negative or positive light stimuli.
It contains a first order inertia (with its speed controlled by
T3) and a lag element characterized by τ2. The lower channel
gain is controlled independently of the upper channel by Ki.

Calculating the inverse Laplace transform, we may easily
obtain the model response y(t;φ) in time domain for a positive
light stimuli at t = 0 as a sum of the upper and lower channel
responses, yupper(t;φ1) and ylower(t;φ2), respectively:

y(t;φ) = yupper(t;φ1) + ylower(t;φ2) (1)

where

yupper(t;φ1) =

 −KrT 2
1

(t− τ1)e−
t−τ1
T1 if T1 = T2

Kr
T2−T1

(
e−

t−τ1
T1 − e−

t−τ1
T2

)
otherwise

ylower(t;φ2) = −Ki

(
1− e−

t−τ2
T3

)
and

φ = [φ1, φ2]T = [Kr, T1, T2, τ1,Ki, T3τ2]T

are liveness features, i.e., the vector of seven parameters
setting the model response. Thus, the observed pupil dynam-
ics (time series) is transformed to a single point in seven-
dimensional, liveness feature space by solving the model
fitting problem.
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C. Searching for liveness features: fitting the model

Optimal model parameters φ̂ = [Kr, T1, T2, τ1,Ki, T3τ2]T

for each eye movie are identified by solving nonlinear least-
squares curve fitting problem of the form:

φ̂ = arg min
φ∈Φ

N∑
i=1

(ŷ(t;φ)− y(t))2 (2)

where Φ is the set of possible values of φ, y(t) is real
(observed) change in the pupil size, ŷ(t;φ) is the model
response given the parameters φ and estimated for a given
y(t), and t = 0, . . . , tmax. We found that tmax ≤ 1.5 sec. makes
this model useless; hence, in this work we analyze a multitude
of optimization horizons starting from tmax = 1.6 sec. and
finishing with the maximum tmax = 5 sec., Fig. 3.

Fig. 3. Kohn and Clynes model responses (solid and thick green
line) calculated for pre-processed measurement (black dots) shown in
Fig. 1. In each case the modeling starts in t = 0. Top left graph
presents the model output after 5 second observation, achieved for φ̂ =
[62.82, 0.10, 4.27, 0.17, 47.97, 0.84, 0.14]T . Remaining three graphs illus-
trate the degradation in modeling accuracy when the optimization horizon
decreases.

D. Goodness of fit

To assess the goodness of fit we use normalized root mean
square error, namely

GoF = max

(
0, 1− ‖y(·)− ŷ(·;φ)‖

‖y(·)− ȳ(·)‖

)
(3)

where ȳ is the mean of y, and ‖·‖ indicates the 2-norm of a
vector. GoF limits from 0, when ŷ is no better than a straight
line fitting y, to 1 for a perfect fit.

E. Classification of the liveness features

Sample values of the liveness features shown in Fig. 4
suggest their heterogeneous discrimination power. However,
we do not apply any feature selection method due to the
low dimensionality of the feature space. Moreover, when
identifying the model, we need to set all seven parameters.

Fig. 4. Values of the liveness features φ̂ calculated for the expected (blue
crosses) and odd (red circles) pupil reactions for positive light stimulus and
five second observation time. Results for all 204 eye movies are shown.
Normalized root mean square error (NRMSE) is also shown in the bottom
right graph, suggesting a far better fit for normal pupil reactions when
compared to odd ones.

Therefore there is no practical rationale behind narrowing the
feature set.

To build a classification function, we use the Support Vector
Machine as one of the best off-the-shelf classifiers performing
well in low dimensional feature spaces (as in our case). To
approximate linear and nonlinear classification boundaries, we
deployed linear SVM as well as radial basis function and
polynomial kernels.

VI. EXPERIMENTS AND RESULTS

A. Generating gallery and probe samples

In order to minimize the risk of underestimating the perfor-
mance errors, we divide our dataset into two disjoint subsets
used to train and evaluate a given method. The training subset
is often called the gallery, while the subset used to evaluate
the trained algorithm is called the probe. In ideal situation we
have ample sizes of both gallery and probe subsets to provide
statistical guarantees of the calculated errors that satisfy our
needs. In a typical situation, however, the sizes of those sets are
far below the ideal, and – depending on the original database
size – different cross-validation techniques are used to answer
how the specific results would generalize on the independent
and unknown data. In biometrics we commonly use the k-fold
and leave-n-out cross-validations, setting k = 2 in the former
(two folds, possibly of equal size, corresponding to the gallery
and probe subsets) and setting n = 1 in the latter (the gallery
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consists of n − 1 samples, while the remaining one sample
forms a probe set).

In this work leave-one-out cross-validation is used, but
leaving out all samples of a given person instead of using a
single sample (i.e., single time series). This scenario generates
n = 26 runs of training-testing experiments (which is equal to
the number of distinct subjects) instead of 204 (i.e., number of
all samples), but due to statistical dependency among samples
of the same person, we believe in obtaining evaluation results
unbiased by personal dependency.

B. Decision making

Relying solely on the classifier output is insufficient since
some odd reactions of the eye may result in model parameters
falling into the subspace representing authentic eye reactions.
It is a good idea to analyze the goodness of fit simultaneously
with the classifier output, as erroneously accepted samples
may result from poor model identification. This builds a two-
dimensional decision plane with classifier response on one axis
and the goodness of fit on the other providing four decision
regions, Fig. 5. We accept the observed object as alive only
when the classifier decision is positive and the model fit is
accurate.

Fig. 5. Decision plane defined by the SVM output and the estimate of
goodness of fit (GoF). This example shows that requiring some minimum
value of GoF when calculating the liveness features improves the final
decision: the method correctly rejected a few odd reactions mistakenly
accepted by the SVM (represented by the red dots) but resulting from an
inaccurate model (GoF below the threshold). This example is generated for
all 204 samples classified by the linear SVM during 5 second observation
period.

C. Assessment of the method performance

We had two objectives when performing the experiments:
a) to assess the performance of the method and select the
most reliable SVM kernel, and b) to find a minimum pupil
observation time that is necessary to offer reasonable accu-
racy. The former answers the question of whether there is a
theoretical potential in this approach. The latter estimates the
chances of practical deployments in a biometric system, since
the expected iris capture times should be short (not exceeding
a few seconds).

Application of a leave-one-out procedure (leaving out all the
samples for a given person) leads us to n = 26 estimation-
evaluation experiments. That is, in each experiment we train

three different SVMs (linear, polynomial and radial basis),
along with eventual parameter optimization (in particular:
order of polynomial kernel and attenuation parameter for
radial basis kernel) using all samples for n − 1 subjects. We
then evaluate these SVMs on the unknown samples of the
remaining subject. In each estimation experiment, we also set
the goodness of fit threshold for later use in evaluating the
classifier with the remaining samples. We decided to set the
GoF threshold so as not to increase false rejections due to
liveness detection, i.e., we minimized NPCER. There is an
important rationale behind this approach rather than minimiz-
ing the false acceptances of non-living eyes that comes both
from theory and practice. Theoretical deliberations suggest that
predicting the nature of – and hence resulting statistics related
to – all the possible attacks is impossible. On the other hand,
it is easier to develop statistical models for authentic biometric
samples. Thus, it is reasonable to focus on authentic data when
approximating a classification function and to accept that this
classifier may generate some errors for fakes. This approach is
more robust than an opposite approach in which we would fix
the classification function tightly around specific fake samples,
since the generality for other kinds of fakes would be weak
and would decrease accuracy for authentic samples. This
corresponds to practice, since the system developers are more
resistant to the increased probability of false rejection and they
are more likely to a higher probability of accepting the fakes
(which is very high with no liveness detection anyway, and
which always decreases when even a weak PAD method is
applied).

Consequently, we performed n = 26 independent evalua-
tions. The average error rates are presented for each SVM
and each observation time as the final results (see Figs. 6,
7 and 8). Results show a few interesting outcomes. First, all
the classifiers managed to perfectly differentiate the odd and
natural reactions of the pupil if we can allow for 5 second ob-
servation (NPCER=APCER=0 for all 26 evaluations). Second,
it seems that we may shorten the observation time to less than
3 seconds, since all the SVMs perform well for time horizons
slightly exceeding 2 seconds. Third, the performance of three
different SVMs is similar suggesting that building a linear
classifier would be an adequate solution to obtain acceptable
performance for the proposed liveness features.

VII. MERITS AND LIMITATIONS: DISCUSSION

The outcomes shown in the last section suggest that pupil
dynamics may deliver interesting liveness features when ob-
serving the eye for a short time (relative to the typical acqui-
sition time of a few seconds in iris recognition). Mimicking
pupil dynamics is difficult, and concealing one’s own pupil
reaction is impossible due to its involuntary nature. The
medical literature reports also that the pupil reaction may
change under stress. Therefore, we may even formulate the
hypothesis that this is one of few methods that could recognize
the capture under coercion.

Implementation of the proposed approach may have an
additional, positive side effect. It is known that the accuracy
of iris recognition may be affected by inconsistencies in pupil
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Fig. 6. Averaged error rates as a function of the observation time (calculations
made every 200 ms starting from 1600 ms and ending after 5000 ms),
achieved for linear SVM. Blue circles show the average (for 26 independent
evaluations) proportion of authentic presentations incorrectly classified as
attacks. Red crosses show averaged proportion of attack presentations that
were incorrectly classified as authentic ones when we rely solely on the SVM
output. Red dots suggest far better accuracy when the goodness of fit is
analyzed along with the classification decisions. We added regression lines
to illustrate linear trends as a function of the observation time.

Fig. 7. Same as in Fig. 6, except the polynomial kernel is used in the SVM
(with polynomial order equal to 3).

Fig. 8. Same as in Fig. 6, except that the radial basis kernel is used in the
SVM.

size, especially when the pupil dilation differs significantly
in the enrollment and authentication processes. The approach
presented in this paper can paradoxically compensate for this
phenomenon at no cost, in particular not introducing additional
acquisition time. Namely, once the iris movie is captured, the
biometric system can select one (or a few) iris images with
different sizes of the pupil to perform the biometric recognition
(no additional capture is needed). If the same system records
the pupil size observed at the enrollment along with the
reference template, it can select the frame with similar pupil
size at the authentication stage. If there are no pupil size data
connected to the reference template, the system can deploy
multiple authentication images presenting different pupil sizes
and select the lowest distance between the template and the
authentication sample. This should significantly lower within-
class variance of the iris comparison score distribution.

To complete our conclusions, we should also analyze the
darker side of the coin. First, the measurement of dynamic
features takes time. Not all applications allow for additional
two seconds when capturing the iris. Second, limitation may
come from the variability of dynamic features across different
populations and more subtle changes in pupil size for elderly
people. Since the database used in this study does not contain
any measurement from elderly people, reported errors may
be underestimated in their case. The third limitation may
refer to the possible non-stationarity of pupil dynamics as a
consequence of ingestion of different substances (e.g., drugs or
alcohol), an altered psychological state (e.g., stress, relaxation,
drowsiness or mental load). We do not know of scientific
results that would thoroughly discuss the influence of these
factors on pupil dynamics, yet it is easy to imagine that they
are not unimportant. Since this work presents research results
for people who are not stressed and who have not ingested
any substance that could modify pupil reaction, we cannot
guarantee that pupil dynamics is unaltered in these abnormal
circumstances. Lest we also forget the surrounding environ-
ment, since the starting pupil size (and thus the amplitude of
the reaction) depends on the intensity of ambient light. This
research used data collected in darkness before applying light
stimuli.

To conclude, this method seems to be a good candidate for
robust liveness detection and has a high potential for practical
applications. Keeping in mind its limitations, one may obtain
an interesting element of the PAD implementation that is
sensitive to features not offered by methods detecting static
artifacts.
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