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Abstract—This paper proposes a biometric recognition method
based on thermal images of inner part of the hand, and a
database of 21,000 thermal images of both hands acquired
by a specialized thermal camera from 70 subjects. The data
for each subject was acquired in three different sessions, with
two first sessions organized on the same day, and the third
session organized approximately two weeks apart. This allowed
to analyze the stability of hand temperature in both short-term
and long-term horizons. No hand stabilization or positioning
devices were used during acquisition, making this setup closer
to real-world, unconstrained applications. This required mak-
ing our method translation-, rotation- and scale-invariant. Two
approaches for feature selection and classification are proposed
and compared: feature engineering deploying texture descriptors
such as Binarized Statistical Image Features (BSIF) and Gabor
wavelets, and feature learning based on convolutional neural
networks (CNN) trained in different environmental conditions.
For within-session scenario we achieved 0.36% and 0.00% of
equal error rate (EER) in the first and the second approach,
respectively. Between-session EER stands at 27.98% for the first
approach and 17.17% for the second one. These results allow for
estimation of a short-term stability of hand thermal information.
This paper presents the first known to us database of hand
thermal images and the first biometric system based solely on
hand thermal maps acquired by thermal sensor in unconstrained
scenario.

I. INTRODUCTION

Palm geometry and vein patterns are common biometric
modes related to hand, whereas the use of thermal features for
identity recognition has not gained too much attention. This
can be related to high prices of thermal cameras, although
over the years the cost and size of thermal sensors have been
decreasing. Portable infrared sensors that can be connected
to smartphones recently offered on the market can make this
biometric mode more accessible.

The main advantage of using thermal information in bio-
metrics is that spatial distribution of temperature is difficult
to reconstruct with a spoofing artifact. This stands for having
liveness detection built into this method by default. Adding
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unconstraint acquisition, thermal-based hand recognition ap-
pears as a method that is hygienic, non-invasive, fast, and
independent of ambient light. Biometric recognition based
on hand thermal features should not be confused with hand
geometry or vein pattern recognition. Thermal properties are
closely associated to the pattern of blood vessels, but these are
separate approaches to identification problem. However, it is
possible that multimodal system, which combines these two
characteristics may achieve high reliability.

Certainly, we should be aware of a few important limita-
tions related to physiological and environmental factors that
influence the body temperature, such as health conditions,
emotions, dynamics of metabolic processes, anatomy, muscle
function and subject’s activity right before data acquisition.
This paper is the first work known to us investigating a
reliability of hand thermal features in a short-term period
(approx. two weeks) acquired by a professional thermal sensor
in unconstrained environment. The database collected for 70
subjects and encompassing 21,000 thermal images is made
also available to facilitate further research in this topic.

This work is organized around three questions that we
answer in the next subsections:

Q1. Is the distribution of hand temperature measured by a
thermal sensor in unconstrained setup unique?

Are the thermal features stable and able to offer a reliable
biometric recognition after a period of time?

Which technique of feature extraction and classification

applied to thermal images delivers the highest accuracy?

Q2.
Q3.

In section II we review past work related to thermal hand
features. Section III presents the acquisition protocol and
the database of thermal images. In Section IV we present
image pre-processing steps required prior feature extraction
and classification presented in Section V. Concluding remarks
in Section VII include discussion on advantages, limitations
and future work.



II. RELATED WORK

Use of thermal information in biometrics is typically nar-
rowed to either object detection and segmentation or to sup-
porting technique for non-thermal feature extraction. The latter
is especially effective when the background temperature is
substantially different from objects, such as faces, hands or
veins. There are different ways to measure the temperature
used to visualize the heat distribution. The measurement can
be carried out with sensors using changes in the resistance of
the object under the influence of temperature, changes in the
volume of fluids or by the registration of the thermal radiation
emitted by a human body, which emits waves from the range
of (2um;20pum,).

Thermal images of the back of the hand are usually
employed for identity recognition based on the veins pat-
tern, thanks to high efficiency of biometric systems based
on the hand vein patterns. Attempts to obtain vein patterns
from thermal images date back to the mid-1990s [1]. In
these solutions, images are usually obtained using far in-
frared (FIR) sensors. Pre-processing, including denoising and
image enhancement, is necessary to extract the texture of
blood vessels. The comparison is usually carried out with
a skeletonized vein structure, segmented after locally adap-
tive image thresholding. Cross and Smith [1] developed a
low cost automatic thermographic imaging system and used
three vein signatures matching methods: grid-based matching,
constrained sequential correlation, and fuzzy relaxation. The
accuracy is estimated at 60-80% of correct recognition due to
small sample size (20 people x 5 images). Lin and Fan [2]
extracted dorsal hand vein pattern by using modified watershed
transform based on properties of thermal images, and analyzed
the dorsal palm vein patterns, to end up with EER = 2.3%.
Infrared thermal hand vein patterns were also analyzed by
Kumar et al. [3]. Their feature extraction approach based on
a Gabor filter bank, enabled to achieve the false acceptance
rate (FAR) of 0.1% on a database of sample from 100
subjects. Personal verification system using thermal-imaged
vein pattern on the back side of the hand was largely presented
by Wang and Leedham [4], [5], [6]. They compared methods
of acquisition of vein image using near-infrared (NIR) and far-
infrared (FIR) sensors, paying attention to the advantages and
disadvantages of a given solution. The study mostly concerned
image acquisition, which was carried out using a thermal
camera in a normal office environment. Image enhancement
included denoising using a median and Gaussian low-pass
filtering and image normalization to have some pre-defined
mean and variance [7]. A locally adaptive thresholding was
utilized to extract the vein patterns from the background.
Structures extracted in this way were then skeletonized and
compared using the Line Segment Hausdorff Distance. The
authors report zero FAR and zero FRR on a small database.

Several methods of hand image segmentation based on
thermal features were presented by Font-Aragones et al. [8],
[9] and Faundez-Zanuy et al. [10]. The authors propose a
segmentation method based on Fisher ratio, cluster analysis

and using active shapes for both visible-light and thermal hand
images. The research was carried out on images acquired from
104 subjects and the claimed accuracy is close to 85% in the
case of the hand and 56% in case of the finger. Wang [11]
used a thermal sensor to extract hand geometry-based features
in a more accurate way when compared to using visible-
light imaging only. The extension neural network (ENN) was
used in classification of features and allowed to achieve 99%
accuracy for a small database of samples from 30 subjects.

The only paper presenting how hand thermal data can be
used in biometric recognition was proposed by Czajka and
Bulwan [12]. Instead of a thermal camera, the authors used
a proprietary thermal matrix of 1,000 thermal sensors deliv-
ering low-resolution heat maps. Feature selection was based
on “minimum Redundancy, maximum Relevance” (mRMR)
method preceded by dimensionality reduction of a feature
space, for which principal component analysis (PCA) and
linear discriminant analysis (LDA) were used. The authors re-
port minimum EER = 6.67% achieved for k-nearest neighbors
classifier on the dataset of thermal maps acquired from 50
subjects. It is noteworthy that the acquisition of images by the
thermal matrix used in this work requires a physical contact
of a hand with the thermal sensors and accurate positioning
of the hand during time period of minimum 4 seconds.

To our best knowledge, there is no research to date that
proposes a biometric system based on thermal maps acquired
by an infrared camera in an unconstrained environment. Also,
we are not aware of any other database of thermal images of
the hand that would be publicly available to researchers.

III. DATABASE OF THERMAL HAND IMAGES

Thermal hand images used in this study were acquired by
the FLIR SC645 thermal sensor [13] in a setup that did not
require any hand stabilization or exact hand positioning. Each
thermal sample has a resolution of 640 x 480 pixels and
automatic focus adjustment implemented in the camera help
to get sharp images. All samples were acquired in an office
environment with air conditioning and the ambient temperature
set to 22°C (thermal comfort for an average human [14]).
Other factors that might influence the hand temperature, such
as health condition, environment condition right before the
measurement, time from last meal, etc., were recorded and
they are included in the metadata.

The volunteers were asked to raise their hands up to the
chest level and present their palm facing the camera. The palm
plane was at the right angle to the sensor optical axis. The
measurement took place without any direct contact with the
sensor. During a single presentation ten images were acquired
at 6.3 FPS (frames per second). That is, a single presentation
lasted approximately 1.6 seconds. Volunteers were asked to
present their hand at least five times in a single session, hence
at least five series of 10 thermal maps were acquired on each
visit. To research a temporal stability of thermal maps, samples
were acquired in three different sessions: two first organized
on the same day, but separated by a several minutes, and the
third carried out approximately a two weeks after the first one.



We have collected 21,000 thermal maps in total from left
and right hands of 70 different subject. 26 were males and 44
were females. Each volunteer signed a consent and agreed to
collect the thermal maps and corresponding metadata. Each
record has been assigned a fake identifier making the data

anonymous. This database is available for research purposes’.

IV. PRE-PROCESSING OF THERMAL HAND IMAGES
A. Hand Segmentation

Unconstrained acquisition calls for a precise image seg-
mentation as the first step. This process leads to removal of
unnecessary information from the image and to keep only its
important properties. It is assumed that thermal images contain
two classes of temperatures that should be separated: related to
a hand and to a background. Two methods of setting a global
binarization threshold were evaluated. The first, proposed
by Otsu [15], divides pixels into two groups to maximize
between-to-within-class variance. Since Otsu’s method makes
no assumptions on the distributions of pixel intensities, we
observed correct segmentation in areas that were warmer than
an ambient temperature by at least 0.2°C'. However, hand areas
with temperatures similar to the background, such as finger
tips, were segmented incorrectly, as depicted in Fig. 1).

Fig. 1:

Top row: sample thermal images. Second row:
segmentation masks obtained by Otsu’s method. Third row:
segmentation masks obtained by GMM-based method. Bottom
row: thermal images with GMM-based masks applied. GMM-
based approach ends up with more accurate segmentation than
Otsu’s method.

This problem can be partially solved by using Gaussian
Mixture Models (GMM) [16] to approximate distributions of
hand and background pixels. GMM-based method improved
image segmentation especially in areas of fingertips that often
have a temperature close to ambient temperature (cf. two
bottom rows in Fig. 1). However, the segmentation based on

BioBase-Hand-Thermal v1.0, http://zbum.ia.pw.edu.pl/EN/node/46

a global threshold does not work well in cases of cool fingers
(see last column in Fig. 1). Hand temperature distribution
depends significantly on external conditions and is closely
related to location of blood vessels and dynamics of metabolic
processes. The fact that the fingers are the coolest part of a
hand is not only related to thermal diffusion. Our organism
has priorities in maintaining adequate temperature of various
body parts: the energy is first used to heat important internal
organs such as brain, heart or liver, and the extremities are
heated in the second order [17]. Also, incorrect segmentation
was observed more frequently for female hands than these of
males, possibly relating to the menstrual cycle. Thus, in this
work we use only central part of the palm to extract biometric
features. The exception is the CNN approach, in which we use
whole-hand images for training and identity recognition.

B. Region of Interest and Thermal Data Representation

To find the region of interest (ROI) used further to extract
biometric features, we inscribe a circle with the largest possi-
ble radius into the hand’s contour. That means, based on the
binary segmentation mask, a distance map between all inner
points and hand silhouette is first determined. Each element of
the distance map is the Euclidean distance to the nearest point
lying on the contour. The maximum element of the distance
map determines the circular ROI (Fig. 2).

Fig. 2: Left: The gray level corresponds to a distance between
a given point and the hand silhouette (red). The largest circle
(ROI) possible to be inscribed into the hand contour is shown
in blue, and its center in shown as green star. Right: The
local temperature map within the resulting ROIL.

All regions of interest must be normalized to account
for varying image scale in unconstraint acquisition scenario.
Experiments carried out to determine the best ROI size for
BSIF-based feature extraction ended up with 101 x 101 pixels.
Convolutional neural network applied also in this study is
based on the VGG-16 architecture, forcing the input images
to be upscaled to 224 x 224 pixels, and hence this resolution
was used in a data-driven approach.

In addition, to account for the varying range of temperatures
observed for different subjects and sessions, raw thermal
images were normalized to the range of (0, 1), after which
a histogram equalization operation has been applied, Fig. 3.

V. FEATURE EXTRACTION AND CLASSIFICATION

Two approaches for feature selection and classification are
proposed and compared: feature engineering deploying texture
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Fig. 3: Thermal image representations: raw thermal image as
acquired by the camera (right), thermal image normalized to
(0,1) range with histogram equalization (left).

descriptors (Binarized Statistical Image Features and Gabor
wavelets) and feature learning based on convolutional neural
networks trained in different environmental conditions. The
next subsections discuss both approaches and the obtained
results.

A. Application of Texture Descriptors

1) Binarized Statistical Image Features: BSIF [18] gained
a lot of attention in various computer vision tasks and biomet-
rics. It generates a series of binary images that can be used as
binary codes, or can be concatenated to form a grayscale image
used to calculate a histogram-based image descriptor. Each bit
of the output binary code is associated with a specific filter
and the code length is determined by the number of filters in
the filter bank. The authors suggest using from five to twelve
different filters in a single filter bank. Filter kernels suggested
by BSIF authors have 8 different resolutions: 3 x 3, 5 X 5,
7Tx7,9%x9,11 x 11, 13 x 13, 15 x 15, and 17 x 17 pixels.

The filter kernels in BSIF approach are selected to maximize

the statistical independence among filter responses. Three
kinds of filters trained with different sets of images are
considered in this work:

« original kernels proposed by Kannala and Rahtu [18]
trained on natural images (e.g., grass, stones, fur, trees,
landscapes),

o kernels trained on multiple patches of twenty thermal
images selected randomly from the corpus collected in
this work,

o kernels trained on multiple patches of twenty images
chosen randomly from a database of infrared hand vein
samples [6].

Having a kernel w; and an image patch z of the size equal

to the size of a kernel, a local filter response is expressed as
a correlation between w; and x [18]:

8; = Zwi(um)x(um) (1)
u,v

A binary code is obtained by quantization of the local
responses, namely: bit b; = 1, when s; > 0 and b; = 0 oth-
erwise. Taking into account n different filter kernels selected
for a filter bank, we get n bits of the code for each pixel of
the input image. This set of bits obtained for each pixel can
be converted into a number in the range of (0; 2" —1) that can

be further used to calculate histogram-based image descriptor
or to visualize the BSIF output as an image. Filters used in
this work differed with size and design, so the essential part
of this research was a selection of optimal set of kernels to
extract valuable biometric information.

2) Gabor Filters: Gabor filters have a wide range of
applications including image processing and recognition. The
two-dimensional real-valued Gabor kernel is given by:

<f | v}
Flag) = e T o (2%9 + w) 0

2mo L0y A
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where o, and o, define the width of the Gaussian envelope
in x and y dimensions, # is the kernel orientation, and %) is
the phase. In all our experiments 1) = 0 and 0, = o, = 1.

Yp = —xsinf + y cos 6

3) Selection of Optimal BSIF Filter Banks and Gabor
Kernels: Both BSIF- and Gabor-based features depend on
selection of filter parameters. Original BSIF filters [18] were
analyzed for all sizes from 3 x 3 to 17 x 17, and BSIF
filters retrained with thermal and vein images were ana-
lyzed for sizes from 3 x 3 to 23 x 23. Each BSIF-based
approach is then based on a single, best-performing filter
bank. A similar procedure was performed for setting the
parameters of Gabor filters. 8 different orientations, namely
6 € {90°,60°,45°,30°, 0°, —30°, —45°, —60°, } and 10 wave-
lengths, namely A € {3,5,7,9,11,13,15,17,19,23} were
considered. As in BSIF, the best performing single Gabor
kernel was used.

Figure 4 illustrates an example raw thermal image trans-
formed into feature sets using four feature extraction methods
evaluated in this paper.

Fig. 4: Features obtained from an example thermal image.
First: BSIF code obtained for original filters [18]. Second:
BSIF code for filters trained on thermal hand images. Third:
BSIF code based on filters trained on vein images. Fourth:
encoded magnitude using Gabor filtering. Fifth: encoded
phase using Gabor filtering.

4) Alignment of Thermal Images: Due to the fact that
the acquisition does not require any hand stabilization and
a subject can present palm in an arbitrary way, images must
be aligned prior to calculation of a comparison score. Thus,
in this work we use distance maps described in Sec. IV-B to
align thermal images. Fig. 5 presents example distance maps
of two different subjects.

These distance maps are not stable on the whole palm
area. However, we observed that the central part of a line
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Fig. 5: Example distance maps of two subjects obtained in
different sessions. Blue lines represent maximum values of
the Euclidean distance from the wrist region to the middle

fingertip.
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Fig. 6: Estimation of the thermal hand image rotation based
on the stable part of a distance map.

representing maximum values of the Euclidean distance from
the wrist region to the top of a middle finger (shown in blue
in Figs. 5 and 6, and denoted as stable area) aligns well with
hand rotation and is stable across acquisitions and subjects.
The first point of the stable line segment was set in the central
point of the ROI, and the distance of the second point was set
experimentally to 96% of the ROI radius. The line segment in a
stable area was then approximated by a straight line using least
mean square minimization resulting in an absolute rotation of
a hand during acquisition. Consequently, the corrective image
rotation was based on the difference of absolute rotations of
two samples being compared.

5) Thermal Stability Maps: Stability of inner hand temper-
ature may be uneven within ROI and is related to the location
and pattern of the blood vessels. Since during the enrollment
more than one thermal sample is collected, we can obtain the
stability maps, i.e., sections of ROI with the smallest standard
deviation of thermal data for each person. These maps can
then be used to calculate weight matrices for all ROI pixels:

w(z,y) =1 - &Y 5)

Omax
where o(x,y) is a standard deviation of a pixel (z,y) of the
thermal map, and opax is the maximum standard deviation
observed for a given subject during enrollment. Note that
w(x,y) approaches 1 for very stable pixels (due to the standard

deviation o(x,y) being close to zero), and w(z,y) =~ 0 for
unstable areas (due to the standard deviation o(zx,y) being
close to the maximum observed value).

Fig. 7: Example region of interest (left) and a corresponding
stability map w (right).

B. Application of Convolutional Neural Network

Convolutional neural networks have become widely used in
computer vision problems, especially biometric recognition of
faces. CNNs process images all the way from pixels to deci-
sions owing to a hierarchy of feature extractors. Each convolu-
tional layer extracts features from output of the previous layer,
and the last, fully-connected layers perform classification. The
main upside of such structures is that the convolutional kernels
are learned directly from the data. Hence, there is no need to
“handcraft” our feature extractors, which may be helpful in
our case where our intuition related to the best hand thermal
features may be incomplete or wrong. This flexibility of the
CNN may be also a pitfall. The network that is insufficiently
regularized by our prior knowledge about the problem may
have a poor performance in cross-dataset and subject-disjoint
testing.

In this study, we employed two CNN architectures for the
purpose of recognizing thermal hand images:

1) SimpleNet: this architecture was designed and trained
from scratch, and consists of 4 convolutional layers with
rectified linear units (ReLU), each of them followed by a pool-
ing layer: max pooling after the first convolutional layer and
average pooling after the remaining convolutional layers, Fig.
8. Finally, two fully connected layers with ReLLU activations
followed by a softmax layer provide the estimation of class
membership probability for input samples. Stochastic gradient
descent with momentum m = 0.9 was used in minimization.
The initial learning rate 0.05 has been gradually decreased to
0.0005 in the last epochs. We have also increased the size and
variability of the training set. For each ROI in the training
set we added its three rotated versions: the original sample
rotated by +5° and the original sample normalized by aligning
its absolute hand rotation (cf. Sec. V-A4) to the horizontal
position.

2) VGG-based CNN: the second architecture is a well-
known VGG-16 model, created by the Visual Geometry Group
at the University of Oxford [19], adapted and fine-tuned
using the same training set as for training the SimpleNet. It
consist of 13 convolutional layers with ReLU. Every second
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Fig. 8: Architecture of the custom convolutional neural network SimpleNet applied in this work.
convolutional layer is followed by a max pooling layer. VGG 5
contains three fully connected layers with ReLU activations 2 EZ (B(i,§) — Bo(i, 4)) ©)
and dropout regularization. For minimization, the stochastic X

gradient descent with momentum m = 0.9 was used. The
learning rate was 0.0001. VGG is trained on natural images,
but has been shown to achieve good results in numerous
recognition problems, and with minor modifications and fine-
tuning can be adapted to a different task that it was originally
trained for.

VI. EXPERIMENTS AND RESULTS

A. Training and Testing Subsets

Two scenarios for template creation are considered.

First scenario: only data acquired in the first session was
used to calculate biometric references. We used 85% of the
first session data as the training set. Testing set consisted of
15% of the data acquired in the 15 session, 100% of the data
acquired in the 2" and 3" sessions. This scenario allows
determining the biometric capability of thermal characteristics
(intra-session comparisons) and evaluate the temporal stability
of hand thermal maps assuming that the enrollment is per-
formed during a single visit (inter-session comparisons).

Second scenario: we merged 85% of data acquired in
sessions 1 and 2 to compose the training set, while test was
performed on 100% of 3" session samples. This scenario
allows to evaluate the method when the enrollment can be
organized on a single day, yet the time gap between acquisi-
tions is a few minutes.

We made 10 random splits into evaluation and testing
subsets, and hence 10 independent training and testing exper-
iments were made to calculate interval estimators of the error
rates. The exception is the VGG-based approach, which was
trained only on a single train/test split, due very long CNN
training times. Since a single hand presentation resulted in 10
images, and we had 5 presentations in one session (cf. Sec.
III), in each experiment we selected randomly one sample for
each presentation. This allows to generate 5 gallery images.
To generate genuine and impostor comparisons, we selected
randomly one probe image among all samples collected for
5 presentations. x-square statistic was used to calculate the
comparisons score between BSIF codes:

B(i,j) + Bo(1, )

where By is the BSIF code of the gallery image, and B is the
BSIF code of the probe image. The size of the BSIF kernels
achieving the best performance on the training set were:
e 17x 17 for original BSIF kernels and biometric reference
based on the first-session images,
e 15x 15 for original BFIS kernels and biometric reference
based on the first- and second-session images,
e 21 x 21 for all the remaining setups.
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Fig. 9: ROC curves obtained for BSIF codes weighted with
the stability maps (solid lines) and ROCs obtained for the
CNN-based approach (dotted lines). EER values are shown
in brackets.

B. Question 1: uniqueness of thermal hand maps

Table I presents the equal error rate values obtained from
the BSIF-based approach, for two scenarios of data usage
for template creation (cf. Sec. VI-A), namely employing the



training on S1

testing on S2

training on S1

testing on S3

training on S1+S2

testing on S3

20.01 + 1.49%

28.76 + 2.06%

30.24 + 2.81%

21.82 +2.70%

32.79 £+ 2.94%

32.79 +2.94%

19.15 £ 1.78%

31.74 £ 2.72%

31.74 £ 2.72%

17.63 +2.23%

28.62 +1.87%

27.98 +£1.13%

17.55 +2.09%

30.93 + 2.69%

29.85 + 1.50%

17.86 £ 1.75%

28.95 +2.11%

28.95 +2.11%

22.20 +1.45%

32.98 + 3.31%

29.98 + 1.43%

28.80 + 0.57%

38.20 + 1.02%

36.80 + 1.13%

Method training on S1
testing on S1
Original BSIF 5.34 +1.92%
BSIF trained with thermal data 8.66 + 2.55%
BSIF trained with vein data 9.08 + 1.38%
Original BSIF
(with stability maps) 0.90 £ 0.08%
BSIF trained with thermal data
(with stability maps) 2.21+0.39%
BSIF trained with vein data
(with stability maps) 0.36 £ 0.47%
Gabor-based
(with stability maps) 0.28 +0.29%
CNN-based
(SimpleNet) 0.40 £ 0.45%
CNN-based
(VGG-16) Doz

11.42% 26.44% 17.17%

TABLE I: Equal error rates (EERs) along with their standard deviations obtained from 10 random train-test splits for: BSIF
filters trained with different data, the same BSIF filters weighted with thermal stability maps, Gabor-based representation, and
classification based on a deep convolutional networks, for four different train-test scenarios.

data from the first session to generate enrollment references
(columns 2-4 in Table I), and then the data from both the
first and the second sessions (column 5 in Table I). The
first immediate observation is that thermal hand maps may
indeed deliver unique biometric features, with the lowest
ERR = 5.34% for original BSIF filters (trained on natural
images). Interestingly, re-training the BSIF filters with thermal
hand data did not lower the error rates in most scenarios, and
neither did the re-training of BSIF with palm vein data.

However, employing stability maps to appropriately weigh
the unstable regions to lower their impact on the performance
enabled us to further lower the intra-session EERs to below 1%
(Fig. 9, black solid line). Such favorable average EERs below
1% were achieved for BSIF and for Gabor-based coding,
for which stability maps were also employed. The CNN-
based method (SimpleNet) also produces low ERR below 1%,
when testing data comes from the same session that was
employed for building the reference templates. VGG-based
approach, in the same conditions, achieves perfect recognition
accuracy (Fig. 9, black dotted line). Therefore, the answer
to Question 1 is affirmative: hand thermal information is
unique if considered in a short time horizon and has a
potential to serve as a biometric identifier.

C. Question 2: temporal stability of thermal hand maps

The immediate observation after analyzing the results for
comparison between sessions (columns 3-5 in Table I) is that
the performance drops significantly when time between acqui-
sitions increases, see Fig. 9. The best average EER = 27.98%
was obtained for original BSIF kernels when session 1 and
session 2 data were fused for the training. The SimpleNet CNN
seems to learn some additional session-specific properties of

the data and even when the training set is enhanced with
artificially rotated samples, this solution achieves EER =
36.80% in the same scenario. The VGG-based CNN seems to
be the most promising solution, achieving FER = 17.17%.
Thus, the answer to Question 2 is negative: hand thermal
information as used in this study has limited temporal
stability.

D. Question 3: the best approach

The results presented in Table I do not reveal an obvious
winner. It seems that re-training the BSIF filters with thermal
and vein images does not increase the overall accuracy when
compared to the filters trained on natural images. This may
suggest that the limited accuracy obtained for intra-session
comparisons is related mainly to properties of hand temper-
ature and not to the filtering kernels. The largest gain in
accuracy for the BSIF-based approaches is achieved when
the stability maps are used when calculating the comparison
scores. The CNN-based approach allows achieving recognition
rates that exceed those of the BSIF-based approach in every
scenario, however, a closed-set recognition is a limitation
of this method. Hence, the answer to Question 3 is that
incorporating the information about the stability of ther-
mal image areas brings the highest increase in accuracy
for the BSIF-based approaches, but employing a deep
convolutional networks has a potential for even higher
recognition rates.

VII. CONCLUSIONS

This work proposes the first known to us biometric recogni-
tion methods based on hand images acquired by thermal sensor
without the requirement of hand stabilization. Processing of



thermal data acquired in unconstrained scenario requires image
segmentation and alignment that is not trivial. This paper
shows that distributions of hand temperatures are unique and
with the proposed processing pipeline the recognition can be
close to perfect. On the other hand, we present that temporal
stability of hand thermal maps is limited.

Unconstrained environment assumed in this work makes
this a very convenient and hygienic system. Also, thermal
information is difficult to copy and present to the thermal
sensor in a way that would be difficult to detect. This allows
effective presentation attack detection without the need to
employ other hardware or software. Hence, the next necessary
step in this research must be related to appropriate modeling
of intra-session variability that include both biomedical and
technical aspects to propose processing methods that are more
robust to large variations of hand temperature in time.

To facilitate research in this area, and to follow recommen-
dations on reproducible research, the database of thermal im-
ages collected for this study is made available to all interested
researchers for non-commercial purposes.
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