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Abstract

Robust segmentation of thermal hand images, a trivial
task in controlled environments, can be difficult for un-
constrained acquisition with a thermal camera, when the
temperature of the object differs little from this of a back-
ground. This paper implements a method for segmenting
hand images collected in the thermal spectrum involving
a pre-trained, off-the-shelf data-driven model, fine-tuned
with multiple databases of thermal hand images and corre-
sponding, manually annotated ground truth masks. This al-
lows superior performance for difficult samples, compared
against conventional methods such as Otsu’s thresholding
and Gaussian Mixture Modeling. The segmentation accu-
racy for good quality samples is comparable with these tra-
ditional methods, while at the same time being more un-
constrained acquisition-resistant. An improvement of up
to 20% in accuracy measured by intersection over union
is observed for difficult samples, such as hands that were
partially colder than the background, as well as those with
wristwatches and jewelry. This robust segmentation in vari-
ous acquisition scenarios allows not only the correct local-
ization of regions of interest for feature extraction, but also
for extracting accurate hand geometry information. To-
gether with the results of experiments, involving multiple
training and testing scenarios on three different databases,
we provide codes, model weights, and ground truth masks
to ensure reproducibility and facilitate further research.

1. Introduction
Although multiple features of the human hand are al-

ready widely used for personal authentication and identi-
fication, they have heretofore been limited to fingerprints
[13], palmprints [26, 11, 20], geometric features [24, 30, 3],
finger and hand vein patterns [15, 31, 29].

Perhaps the first to introduce a biometric verification sys-
tem based on thermal information obtained from human
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hand were Czajka and Bulwan [8], who employed heat dis-
tribution maps collected with a specialized thermal plate
sensor, at that time considered an inexpensive alternative to
thermal cameras (2013). With heuristic feature selection for
determining the most discriminatory biometric features they
were able to achieve an average EER (Equal Error Rate) of
6.67% on a group of 50 individuals. The method is con-
sidered a possible candidate for bi-modal recognition or a
source of liveness cues for presentation attack detection.
In [4], Bartuzi et al. presented a biometric system utiliz-
ing thermal features of the hand collected with the use of a
specialized, high quality thermal infrared camera, albeit in
an unconstrained, real-world scenario. Their study explored
methods employing binarized statistical image features, Ga-
bor wavelets, and convolutional neural networks, which are
made translation-, rotation-, and scale-invariant. Authors
also introduced stability maps for determining the most ro-
bust portions of the heat distribution, and achieved equal
error rates of 0.36% (BSIF), 0.28% (Gabor wavelets), and
0% (CNN) for intra-session comparisons, and EERs rang-
ing from 11% to 30% for inter-session comparisons. This
shows that although thermal data obtained from the hand
can represent the identity-discriminatory information, it is
also subject to large variations in time.

It has also been shown that thermal features can be em-
ployed as liveness traits for construction of a presentation
attack detection (PAD) method, that can be easily employed
in a hand biometrics system and offer perfect accuracy in
detecting fake representations [6]. Thermal images are also
shown to be able to improve identification rates of a closed-
set biometric system operating on visible light hand images.
Datasets incorporating multi-spectral hand images, includ-
ing thermal ones, have also been introduced [4, 5].

Image segmentation involves extracting the regions of
interest, containing the representations of a given biomet-
ric characteristic, i.e., the hand, while discarding the noise
associated with the background and other possible intru-
sions. While the task is trivial for samples representing a
hand against uniform background, yet complicated for other
cases, including uncontrolled acquisition, during which it’s



impossible to control the background. Also challenging are
thermal images, which have recently emerged both as an
identity-discriminatory, as well as a liveness-related cue.
Here, problems include correctly segmenting hand regions
that are colder than the background. Since some higher-
level semantic information may be necessary, the use of a
feature-learnt approach employing deep convolutional neu-
ral networks (DCNNs) is justified.

This paper introduces a data-driven image segmentation
method utilizing an off-the-shelf DCNN model fine-tuned
for hand images collected in the thermal spectrum in an un-
constrained acquisition scenario, including contributions:

• sample codes and network weights for thermal hand
image segmentation models based on a re-trained off-the-
shelf DCNN, fine-tuned with different datasets of thermal
images and manually assessed ground truths,
• experiments showing a considerable improvement in

hand segmentation accuracy and consistency over conven-
tional methods such as Otsu’s thresholding and Gaussian
Mixture Modeling for challenging samples,
• datasets of ground truth masks for three publicly avail-

able databases used in this work.

2. Related work review
2.1. Hand segmentation methods

This section summarizes the most recent approaches
to hand image segmentation that were proposed over the
course of the last decade. A good review of older efforts in
this field can be found in the work of Bu et al. [7]. For visi-
ble light images collected in a controlled or semi-controlled
manner, i.e., those exhibiting a hand against a uniform back-
ground, thresholding methods such as Otsu’s algorithm [22]
are usually used with good results, cf. [18]. However, when
a challenging background is introduced, or a thermal image
is used, the task becomes more complicated.

Munoz et al. explore hand segmentation utilizing fuzzy
multiscale aggregation [21], which works for photographs
obtained in visible light using a mobile device, e.g., an
iPhone, in a non-controlled environment. A database of im-
ages collected from 50 people is used. RGB images were
converted into the HSV color space and the hue component
was extracted for processing. An accuracy of 94.6% in F1
score is reported for the best approach, in which features
from different color spaces are combined together.

Sierra et al. extend the experiments described above by
proposing a segmentation method based on Gaussian mul-
tiscale aggregation applied to hand images coming from a
synthetic database representing hands displayed on a variety
of backgrounds, such as fabrics, carpet, fur, stone, etc. [9].
Employing multiscale gathering of the pixels accordingly
with a similarity Gaussian function is said to outperform
competing approaches, namely the Lossy Data Compres-

sion and Normalized Cuts, by offering accuracy of 88% to
96% of the F-measure metric, depending on the texture.

Mekyska et al. introduce the first database of thermo-
graphic hand images collected with an infrared camera
TESTO 882-3, with thermal images acquired simultane-
ously with a visible light camera, (320x240 and 640x480).
Thermal image segmentation is discussed as a non-trivial,
person-dependent task – difficulties with segmenting hand
with colder areas are considered. A segmentation method
designed specifically for thermographic data is also intro-
duced in the paper, employing Active shape Models trained
with 50 manually labeled grayscale images collected in the
thermal spectrum. No quantitative accuracy metrics are
given, but the method is reported to produce incorrect re-
sults for hands with colder areas.

A pipeline for segmenting visible light hand images with
complex backgrounds is introduced by Bu et al. in [7], em-
ploying two-stage procedure of first building a hand skin
color model based on a neural network for coarse segmenta-
tion, and then refining the output by detecting hand bound-
aries via edge detection and voting techniques in different
color spaces. The method is reported to achieve sensitivity
and specificity of above 96% each.

Barra et al. present a hand-based biometrics system, in
which hand shape is extracted from the RGB image using
the conversion to HSV color space and multi-thresholding
of the H plane of the resulting HSV image, followed by
refining of the mask using morphological operators. No nu-
meric values assessing the segmentation accuracy are given
[3].

A short paper by Ungureanu et al. presents a hand seg-
mentation approach employing deep learning methods for
grayscale images with various backgrounds [28]. Visible
light hand images from the CASIA and HKPU databases,
are modified with additional, textural backgrounds, such as
grass, wood, or textiles. Two deep neural network architec-
tures are experimented with, namely the SegNet model and
a ’U-shaped’ model introduced by the authors that is de-
signed with the equal number of parameters as the SegNet.
The obtained accuracy is 99.55% and 99.72% of F1 score
for SegNet and the U-shaped model, respectively.

In [4], segmentation methods based on Otsu’s concept
[22], as well as an approach utilizing Gaussian Mixture
Models (GMM), are used to approximate the distributions
of the hand and the background pixels. Although GMMs
allow to obtain much better results, they are still imperfect
in cases of especially cool fingers.

2.2. CNNs for semantic segmentation

Deep convolutional neural networks (DCNN) are already
well known for their excellent performance in a variety
of computer vision tasks, including semantic segmentation
(pixel-level prediction), both for discerning objects from



Figure 1: Samples from the CASIA database (top) and their
respective ground truth binary masks (bottom).

backgrounds, as well as more complicated tasks, such as
labeling traffic imagery for autonomous driving. A good
review of current approaches to semantic segmentation can
be found in [14].

These methods have already been applied in biometrics-
related segmentation tasks, usually outperforming conven-
tional, hand-crafted methods, especially on challenging
datasets, such as noisy, visible light iris images [17], or
post-mortem iris images [27], and was shown to offer su-
perior performance [19]. Because of the DCNNs’ capabil-
ity of automatic parameter finding, they can be trained to
adapt to almost any task, although their limitation lies in the
vast amounts of data needed for the training phase, which
are especially difficult to obtain when fine-grained masks
are involved, as they require a lot of resources to create.
This issue can be partially alleviated by using a pre-trained
model, which is later fine-tuned with a smaller dataset of
target samples.

3. Experimental data
3.1. Datasets of hand images

We use three publicly available databases of hand images
collected in different spectra: CASIA-PalmprintV1 [25],
Warsaw-BioBase-Hand-Thermal-v1 [4], and Tecnocampus
Hand Image Database (THID) [12, 10], further referred to
as CASIA, Warsaw, and THID. CASIA contains 5501 im-
ages of hands of 312 subjects, collected in near-infrared
spectrum, displayed on a black, rather uniform background.
This is a semi-constrained acquisition, as the subjects were
asked to place their hands inside a box equipped with a
camera to limit outside illumination, but hand presentation
varies significantly, cf. Fig. 1.

Images in the Warsaw database were acquired by the
FLIR SC645 thermal sensor in a setup without any hand
stabilization or positioning in a resolution of 640×480 pix-
els [4]. The non-uniformity of samples is mainly attributed
to the varying temperature of the hands of the subjects, es-
pecially in cases with cool fingers, cf Fig. 2.

The following normalization procedure was performed
on the samples prior to any experimentation:

Ii,j =


0 if Ti,j < Tmin

255 if Ti,j > Tmax

Ti,j − Tmin

Tmax − Tmin
× 255, otherwise

(1)

where Ii,j denotes the value i, j-th pixel of the normalized
image, Ti,j corresponds to the value of i, j-th pixel in the
thermal image, Tmin = 20°C and Tmax = 40°C is the ex-
perimentally determined temperature range, which can typi-
cally be observed in the image T (averaged over all images).

Figure 2: Samples from the Warsaw database following nor-
malization (top) and their ground truth masks (bottom).

Finally, the THID database contains hand images col-
lected from 100 subjects in visible light, near-infrared, and
thermal spectra. In our experiments, we use only those im-
ages that were collected in the thermal range. The same
normalization procedure as defined in Equation 1 is used
for these samples, Fig. 3.

Figure 3: Same as in Fig. 2, but samples from the THID
database are shown.

3.2. Ground truth binary masks

For each database, we have chosen a subset of samples
for which ground truth, binary masks were manually pre-
pared by annotating the hand region in each image. Since



preparing dense labels is a very time-consuming task, this
was done for 734 images belonging to 85 classes for the
THID database, and 731 images belonging to 70 classes for
the Warsaw database. For the CASIA database, masks for
all 5501 images were created, since most of them could be
automatically obtained by thresholding, and the remaining
portion of ’challenging’ images was processed manually.
Ground truth masks for selected samples coming from each
dataset are shown in Figs. 1-3. These masks are available
to interested researchers as one of the contributions of this
paper, to stimulate further research in this area*

3.3. Image quality classes

All images from the Warsaw and the THID databases
have been assigned a class that defines the overall character
and quality of a particular image. These classes are defined
and examples are given in Tab. 1.

4. Proposed methodology
4.1. Baseline conventional segmentation methods

For a complete assessment of the accuracy of the seg-
mentation method proposed in this paper, we evaluate
our approach against two conventional hand segmentation
methods, namely:

• Otsu’s thresholding and binarization; Otsu’s method
selects the threshold by maximizing the inter-class (object-
background) variance without making any assumptions on
the pixel intensity distributions [22];
• Gaussian Mixture Models (GMM), which approxi-

mate the distributions of pixels belonging to the hand and
those of the background [16];

4.2. Segmentation accuracy metrics

Two well-recognized accuracy metrics are employed for
assessing the quality of the proposed segmentation method:

• Intersection over Union, a metric typically seen in seg-
mentation tasks:

IoU =
prediction ∩ ground truth

prediction ∪ ground truth

or

IoU =

∑m
i=1

∑n
j=1 Pij ∧Gij∑m

i=1

∑n
j=1 Pij ∨Gij

• E1 error metric as used in [23] and [1]:

E1 =
1

m× n

m∑
i=1

n∑
j=1

Pij ⊕Gij

*instructions on getting access to this data are provided at http://
zbum.ia.pw.edu.pl/EN/node/46

where Pij and Gij denote the logical values of prediction
mask and ground truth mask for the ij-th pixel, respectively,
m,n is the image size in pixels, and ⊕ denotes XOR (ex-
clusive or) bitwise logical operator.

4.3. DCNN model architecture

For the purpose of this work, we take advantage of the
SegNet architecture introduced in [2], which employs a
fully convolutional encoder-decoder architecture. The en-
coder stage employs a VGG-16 model graph, whereas the
decoder comprises several sets of convolution and upsam-
pling layers, whose target is to retrieve spatial information
from the encoder output, to yield a dense, pixel-wise output
map of the same size as the input image. We then fine-tune
the off-the-shelf weights of the SegNet model pre-trained
on ImageNet with datasets of thermal hand images and their
corresponding ground truth masks, cf. Sec. 3.

4.4. Training and evaluation

The training and testing experiments evaluate both the
within-dataset (highlighted in blue) and cross-dataset
performance of the proposed solution. In the first part of
this study, the following five experiments are carried out,
using data from two databases, namely Warsaw and THID
databases:

• training and testing on Warsaw
• training and testing on THID
• training on Warsaw, testing on THID
• training on THID, testing on Warsaw
• training and testing on both datasets

Then, in the second part of the evaluation, the CASIA
database is included in the training phase, and the network
is initially trained on it before further training with Warsaw,
THID, or both. Since CASIA contains a much larger num-
ber of images with corresponding ground truth labels than
the other two datasets (5501 vs ≈ 730, albeit these are not
thermal images, but rather near-infrared ones), the goal is to
help the network learn the typical shape of a human hand.

For the training and testing procedure in the within-
dataset scenarios, 10 subject-disjoint train/test data splits
were created by randomly choosing the data from approxi-
mately 80% of the subjects for training, and the data from
the remaining 20% of the subjects for testing, for each of the
experiments. The network is then trained with each train
subset independently for each split, and evaluated on the
corresponding test subset. All ten splits were made with
replacement, making them statistically independent, and al-
lowing for variance analysis of the results. As for the cross-
dataset evaluations, the training is performed using using
all available samples from the training dataset(s), whereas



Table 1: Definitions and examples for quality-based class assignment of the samples from the Warsaw and THID databases.

Class Description Warsaw THID

I
warm

images presenting a palm (and possibly a part of the wrist)
against a colder background

33.79% of Warsaw
36.78% of THID

II
warm with
intrusions

images similar to those from Class I, but with additional
visible clothing and/or jewelry, wristwatches, etc.

33.11% of Warsaw
20.16% of THID

III
cold

images presenting hands with cooler regions, which
temperature is similar to this of the background or lower

16.28% of Warsaw
23.98% of THID

IV
cold with
intrusions

images similar to those from Class III, but with additional
visible clothing and/or jewelry

16.82% of Warsaw
6.40% of THID

V
heat shade

images with heat-shade effect caused by hand movement
during image acquisition

none in Warsaw
12.68% of THID

–

the testing employed the same 10 test splits obtained for the
corresponding within-dataset experiment.

Training took 150 epochs in each trial, with stochastic
gradient descent as the optimization method. Momentum
of 0.9, learning rate of 0.001 decreased 10-fold after every
50 epochs, batch size of 4, and L2 regularization of 0.0001
were used. The data were shuffled after each epoch.

During testing, a prediction in the form of binary mask is
obtained from the network for each of the images. For each
predicted mask, Intersection over Union and E1 error met-
rics are calculated between the prediction and the ground
truth mask, which is available also for test portions of the
data. These are then averaged to get the mean IoU and
E1 for each test split. The same procedure is repeated for
evaluation of the conventional segmentation methods (cf.
Sec. 4.1), which serve as baseline performance indicators,
i.e., they are evaluated on the exactly same sets of samples,
as the corresponding test split of the DCNN-based method.

5. Experimental results
5.1. Average IoU and E1 within- and cross-dataset

Fig. 4 shows the segmentation accuracy measured with
IoU and averaged over all 10 train/test splits for the best
performing model in both the within- and cross-database
scenario. The winning within-dataset model was trained
with data from all three available databases, namely: War-
saw, THID, and CASIA, and achieves mean

IoUWarsaw
CNN(within) = 94.66% and IoUTHID

CNN(within) = 96.71%

when tested on Warsaw and THID databases, respectively.
In comparison, for the Warsaw dataset

IoUWarsaw
Otsu = 83.75% and IoUTHID

Otsu = 88.15%

IoUWarsaw
GMM = 83.84% and IoUTHID

GMM = 91.38%

for Otsu and GMM, respectively. For cross-dataset, the
best DCNN models still outperform both conventional ap-
proaches, yet by a smaller margin:

IoUWarsaw
CNN(cross) = 85.51% and IoUTHID

CNN(cross) = 94.57%.



Otsu GMM DCNN (within) DCNN (cross)

10

20

30

40

50

60

70

80

90

100

In
te

rs
e

c
ti
o

n
 o

v
e

r 
U

n
io

n
 [

%
]

Warsaw

83.75%

91.30% 92.17%

83.84%

95.75%
94.66%

88.54%
85.51%

Otsu GMM DCNN (within) DCNN (cross)

10

20

30

40

50

60

70

80

90

100

In
te

rs
e

c
ti
o

n
 o

v
e

r 
U

n
io

n
 [

%
]

THID

92.89%
88.15%

96.77%
91.38%

97.32%
96.71%

96.18%
94.57%

Figure 4: Boxplots representing Intersection over Union in
10 test splits, for the two conventional and the proposed
method for both the within- and cross-dataset evaluation.
Medians are shown in red, means in blue.

However, when analyzing the boxplots denoting the per-
formance of each method, one may see that although the
averaged gain on the Warsaw dataset is small (< 2%) for
the cross-dataset experiment, the method gives much more
consistent, and thus predictable results, whereas for the tra-
ditional methods (Otsu and GMM) the segmentation accu-
racy is either very high or very low. We inspect this behavior
closely in the following section by analyzing segmentation
performance in relation to image quality.

5.2. Evaluation in respect to quality of the samples

To get better insight into conditions in which our DCNN
model provides a significant advantage over the conven-
tional approaches, we examine the performance of segmen-
tation in respect to different ‘image quality’ classes, as in-
troduced in Sec. 3.3. Table 2 gathers IoU scores in respect
to the image type, the method, and the database involved.
Blue rows denote the within-database evaluation, which we
do not consider here, focusing only on the cross-database
experiments, since they have much more potential value for
the community. In addition to the numeric representation of

the results, we show selected samples from both databases
together with their corresponding Otsu, GMM, and DCNN
predictions, as well as ground truth masks, see Figs. 5-6.

For warm images from class I, Otsu and GMM give the
best results. This is an expected behavior, since those sam-
ples always exhibit a hand that is well distinguishable from
the background. The DCNN-based method is capable of
achieving slightly lower performance on the THID dataset
(≈ 97% vs ≈ 99% for GMM), and lower (but still exceed-
ing 90%, which can be considered good) for the Warsaw
dataset. When looking at example predictions, the DCNN’s
performance is predictable and coherent, and the network is
not making any major mistakes, cf. Figs. 5 and 6, row 1.

As for the samples from class II: warm with intru-
sions, the GMM still offers best accuracy for the Warsaw
dataset, but the DCNN method outperforms it for the THID
database, albeit by almost 5%. The rather low accuracy ob-
tained by the DCNN model in this case can be attributed to
the fact that it tries to mask out the wrist in addition to the
watch band or jewelry, but it does correctly approximate the
exact shape of the palm, cf. Fig. 5, row 2.

Class III containing cold images of hands partially colder
or of temperature similar to the background, is where the
advantage of the proposed method becomes evident. The
DCNN outperforms conventional methods by a large mar-
gin in both the Warsaw (82.20% vs less than 68%) and the
THID databases (92.67% vs 82.44%). The predictions ob-
tained from the proposed approach are shown in Figs. 5 and
6, row 3 (very good result on the Warsaw sample, and fairly
good on the THID sample). In comparison, both conven-
tional methods failed to correctly localize the fingers.

Similarly to class III, class IV also shows the clear ad-
vantage of the proposed solution over the Otsu or the GMM
algorithms. Figs. 5 and 6, rows 4 show a consistent and ac-
curate prediction given by the DCNN method, and again
a failure of the conventional algorithms. IoU -wise, the
DCNN offers a mean of 72.64% and 88.40% for the Warsaw
and the THID datasets, respectively, whereas the best per-
forming conventional method yielded 63.11% and 67.68%.

Finally, the THID database contains some samples with
a blurring effect caused by hand movement during acqui-
sition, which we call heat shade, cf. Fig. 6, row 5.
These samples, however, do not seem challenging to any
of the evaluated solutions, with all three methods offering
good segmentation accuracy: 93.86% for Otsu, 96.00% for
DCNN, and 96.84% for GMM.

In within-database experiments, the DCNN-based model
trained on all three datasets (Warsaw, THID, and CASIA)
significantly outperforms the conventional ones on samples
from almost all classes, except for class I: warm images.
This approach, however, requires access to the subset of the
target database to fine-tune the model.



Table 2: Intersection over Union in five sample quality classes (cf. Sec. 3.3) averaged over 10 train/test splits in each
experiment obtained for two conventional methods (cf. Sec. 4.1) and the proposed DCNN-based segmentation. Mean IoU
and E1 are given. Best and worst results for each test database for the cross-database experiments are marked in green and
red, respectively. The within-dataset ones are blue, with best performing models bolded and highlighted in dark blue.

Class I Class II Class III Class IV Class V Mean IoU Mean E1

Otsu
Warsaw 97.16% 90.03% 67.87% 62.11% – 83.75% 4.86%
THID 96.13% 86.12% 77.51% 63.84% 93.86% 88.15% 3.61%
GMM

Warsaw 98.11% 90.13% 65.43% 63.11% – 83.84% 4.73
THID 98.76% 88.67% 82.44% 67.68% 96.84% 91.38% 2.62%

CNN-based method:
Train on Warsaw, test on Warsaw 96.62% 93.08% 91.26% 85.91% – 92.75% 2.14%

Train on both, test on Warsaw 97.42% 94.08% 92.48% 88.57% – 93.68% 1.83%
Train on THID, test on Warsaw 84.46% 80.02% 77.19% 64.74% – 78.51% 6.54%

Train on THID, test on THID 96.55% 93.69% 92.02% 88.51% 95.49% 94.42% 1.68%
Train on both, test on THID 97.07% 95.44% 91.74% 90.83% 95.34% 94.46% 1.67%

Train on Warsaw, test on THID 96.86% 93.64% 92.67% 88.40% 96.00% 94.57% 1.60%
Train on Warsaw + CASIA, test on Warsaw 97.35% 94.48% 92.38% 87.98% – 93.98% 1.76%

Train on all three, test on Warsaw 97.59% 94.67% 93.58% 90.26% – 94.66% 1.53%
Train on THID + CASIA, test on Warsaw 90.85% 85.57% 82.20% 72.60% – 85.51% 4.37%

Train on THID + CASIA, test on THID 97.35% 94.72% 93.37% 90.90% 96.40% 95.48% 1.36%
Train on all three, test on THID 97.83% 95.85% 95.49% 93.66% 97.20% 96.71% 0.98%

Train on Warsaw + CASIA, test on THID 96.92% 92.42% 92.65% 88.23% 95.85% 94.30% 1.70%

6. Conclusions

In this paper we implement and evaluate a DCNN-based
segmentation method for segmenting hand images collected
in the thermal spectrum, with a re-trained off-the-shelf net-
work. Experiments evaluating the proposed approach show
that although our model achieves slightly lower perfor-
mance than the conventional Otsu and GMM methods for
easy samples – hand that is easily discernible from the back-
ground, it can still be considered as a state-of-the-art solu-
tion for segmenting thermal hand images thanks to its ex-
cellent predictions given for difficult samples, such as those
with parts of hands or fingers colder than the background,
or images with various intrusions, such as wristwatches or
jewelry. This makes the proposed approach valuable not
only for thermal-based biometric applications, but also for
geometry-based approaches, which rely on accurate seg-
mentation of the entire palm.

Apart from the higher average IoU performance of the
proposed solution, it is also more consistent between the
samples. Slightly lower accuracy obtained by the model for
easy samples is mostly related to over-aggressive masking
of the wrist region and in most cases should not be a disad-
vantage for systems relying on the palm region.

This is the first known to us study presenting a data-
driven solution for hand localization within a thermal in-
frared image, which would successfully operate in diffi-
cult conditions associated with an unconstrained acquisition

scenario, as well as its evaluation against the conventional
methods such as Otsu and GMM. We hope that this method,
publicly available with network weights, sample codes, and
ground truth masks for subsets of three databases used in
this work, will be a valuable addition to the field.
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Figure 6: Same as in Fig. 5 but with THID samples.
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