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Abstract

We used a digitizing tablet to collect handwritten signatures,
with five quantities recorded, namely horizontal and verti-
cal pen tip position, pen tip pressure, and pen azimuth and
altitude angles. We divided the signature features into visi-
ble ones, namely those related to an “image on the paper”
and hidden ones, i.e. those using time-related observations.
Cluster analysis was applied to segment the feature space
into sub-regions of “similar” signatures. The classification
function was approximated with the use of neural networks,
namely a two-layer sigmoidal perceptron and the RCE net-
work which is a variety of radial-basis network. Both sig-
nature classification and signature verification problems are
considered.

1 Introduction

The word signature has many meanings. According to
American Heritage Dictionary [1], it is among many other,
one’s name as written by oneself, or the act of signing one’s
name, or also a distinctive mark, characteristic, or sound
indicating identity.

The second definition refers to the entire act of signing thus
stressing important fact that also way the signature is made
is a part of this signature. This may include not only the
horizontal (x) and vertical (y) coordinates of the pen, but
also the speed of the pen tip, the pressure applied when
signing, the way the pen is held, etc. The signature in this
meaning can be treated as a multidimensional output s =
s(?), t € T, of a dynamic system observed during time T
of making the signature. This system characterizes a per-
son making the signature. The first definition is rather lim-
ited, when compared to the second one, since it refers to
a written name, i.e. a two-dimensional image which in-
cludes no time-related information. It is equivalent to the
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set S ={(x,y): x=x(¢), y=y(t), t € T} on a plane. Re-
turning to the dictionary definitions of signature, note that
while the third definition extends the meaning of “signature”
beyond the handwritten signatures, it may also be used for
handwritten signatures to abstract their identifying property
from particular realizations, as understood in the first and the
second meanings. Note that this very meaning of signature
is employed when saying “this is my signature”. Note also
that the same person may have several different signatures
(full name, initials, surname, etc.).

It is important to differentiate here between the three defini-
tions of signature presented above. To stress this important
distinction, we will say foken for each particular instance
of signatures (the second meaning), while by somebody’s
signature we mean an abstract entity of all possible tokens
that identifies a person (the third meaning). Finally, each
signature image (on a paper or another carrier, in particular
obtained by scanning) will be called the x-y token or the
scanned token, to stress the way it can be reproduced.

We approach here the problems of identity classification
and identity verification. In the classification task we as-
sume that the classes equivalent to signatures are known in
advance. Each class is represented by one or several to-
kens. In other words, for a given new token one has to
estimate the class it belongs to. In the verification problem
each new token comes with a hypothetical class and a hy-
pothesis is tested whether the token belongs to this class.
While traditionally x-y tokens are used in both tasks, more
dependable systems require information about the very sign-
ing process, like the velocities of pen movement, pen tip
pressure during the signing, etc. In this paper we will use
a digitizing tablet to record the time evolution of both the
horizontal and vertical pen coordinates, the pen tip pressure,
and two angles related to pen’s position with respect to the
paper plane, namely its azimuth and altitude. These data
make it possible to select features necessary for signature
identification and verification. The feature set is reduced
to remove dependent features. The resulting feature space
is partitioned into sub-regions, and the decision function is
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approximated separately in these subregions to increase ap-
proximation accuracy. The partitioning is made with the use
of cluster analysis, different for identification and verifica-
tion purposes.

2 Existing approaches

The existing approaches to signature verification can be clas-
sified on the basis of the assumed level of available informa-
tion. Two basic classes of approaches can be distinguished
here, namely static problems that assume no time-related in-
formation and the dynamic problems with time-related infor-
mation available and the data in the form of p-dimensional
functions of time, with p ranging from 2 to 5.

The static approach can be applied to a wide range of prac-
tical problems, and requires no special hardware. Dimauro
et al. [4] present a multi-expert signature verification sys-
tem for bank check processing. First, a pre-preprocessing
is performed to localize a signature token, make it rotation
invariant, and segment it into compact parts. Verification
is made on the base of 6 features calculated for the en-
tire token and 16 features related to the segments. Three
algorithms are combined in a majority voting system, re-
sulting in the false rejection rates (FRRs) about 22% and
the false acceptance rates (FARs) about 3.9%. Lee and Pan
[6] presented a methodology to trace the x-y tokens a human
would do and to employ the resulting dynamic information.
First, a 1 pixel-width signature skeleton is built and repre-
sented by a sequence of strokes, and critical points like the
minima, maxima, and end points are found for each stroke.
The critical points are normalized with the use of their co-
variance matrix to make them translation-, rotation-, and
scaling-invariant.

The dynamic approaches can be classified by the dimension
of the observation vectors, yet the methodology in princi-
ple would not depend on the dimension. A 2-D observation
space is obtained if x and y coordinates are observed in time.
Under these assumptions, Brault and Plamondon [2] make
a model of forgery dynamics that employs a nerve-muscular
system. The task of imitating a signature is modeled here
by a number of consecutive subtasks. In each subtask a sig-
nature element is imitated, defined as a triple: curvilinear
stroke — angular stroke — curvilinear stroke. Each subtask
consists of spatial target perception, preparation of strokes
and stroke execution. Continuity of movement is ensured by
overlap of subtasks. Lee et al. [5] presented an on-line sig-
nature verification system based on about 40 dynamic and
static features out of which 10-15 features are chosen in-
dividually for reference tokens. Majority rules are applied
to decisions based on a relative distance between the tested
and the reference tokens in the feature space, and times of

signing. A 3-D observation space is obtained by addition-
ally recording the pen tip pressure. For such data, Crane
and Ostrem [3] based their procedure on 44 features that
proved best in ERR (equal error rate) minimization. For
verification purposes, a weighted Euclidean feature distance
is applied, along with an arbitrary fixed threshold of the
maximum distance between the reference and the presented
tokens. Personalized feature sets resulted in better ERR rate
(0.5%) than that obtained for a common feature set (1.75%)
at the cost of a longer enrollment procedure due to the use
of at least 100 tokes per signature. Two commercially avail-
able systems also seem to employ 3D observations, namely
Signplus [8] and Cybersign [7]. The most extensive set of
observations is 5-D, where additionally two pen angles are
recorded. Such data were employed by Wessels and Omlin
[11] who proposed a hybrid verification system. Each token
is first normalized to be scale- and rotation-invariant. Veri-
fication methodology based on Hidden Markov Models and
Kohonen Self Organizing Map lead to the FAR of order of
13% for the FRR set to 0%.

3 Experimental design and data collection

Although the act of signing depends on the signer’s person-
ality, each signature instance (i.e. token) depends on par-
ticular circumstances. Consequently, the reference tokens
should be taken over a possibly long period of time, and
in different situations. It may even happen that certain cir-
cumstances make a token inconsistent with previous tokens.
In such cases, it is convenient to introduce a second class
(second signature) for the same person. In our experiments
we took no more than two signature tokens per day from
one person. The accompanying circumstances thus may in-
clude both tiredness at the end of the day and the morning
energy, excitement before an exam and a the calm after it,
happiness after a success and sadness of a defeat. We were
prepared to obtain tokens that may have been classified to
different signatures.
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Figure 1: The signature panel

The signatures were recorded with the use of a Wacom dig-
itizing tablet with a special paper template to make it a
signature panel, Fig. 1. In the center of the template a
frame was placed, whose dimensions were similar to a stan-
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Figure 2: Signature frame

dard window used for confirming credit card transactions
(Fig. 2). A white rectangle inside a bigger gray frame is to
suggest the place for the signature. A black frame addition-
ally encloses the gray one to localize the signatures. On the
other hand, no strict rules were enforced, and some signa-
tures extended beyond white or even gray spaces. The tablet
enables the recording of pen tip coordinates, pen tip pres-
sure, and pen orientation, namely its altitude and azimuth
angles with respect to the tablet plane. The measurements
were registered every 0.01 sec. To enter a signature token
into our data base, the person first chose a signature version
from among three possibilities, namely name + surname,
only surname, or just the initials. Each version represented
a different class, hence it was treated as a variant signature
of the same person.

The data base we collected consists of 359 tokens made by
37 persons. These tokens were grouped later into 48 signa-
tures (classes). The data were grouped into a learning set of
299 tokens (the reference tokens) and a test set of 48 tokens.
The remaining 12 signature tokens were intensionally pre-
pared to forge 9 signatures. To create the forgeries, several
volunteers were asked to choose a signature he or she can
forge, and to train their forgeries on the basis of x-y tokens
for as long they wished before making the actual data base
entry. Sometimes this training took as long as a few days.

4 From observations to features

4.1 Notation
Denote by s(k) a single point in the observation space S C
R as registered by the tablet at the moment k, namely

.
stk) = [s100) s5(k)

where s; denotes the pen tip x coordinate, s, the pen tip y
coordinate, s3 the pen tip pressure, s4 and ss the pen ori-
entation, namely the altitude and the azimuth angles, both
related to the tablet plane. A single token can be then pre-

sented as a matrix

sT(1) si(1) ... ss(D)
S=1 = :

ST [si(vV) s5(N)
where N denotes the number of time steps for the token.
Since the time can be labeled by the row numbers of S,
the token can be visualized as a segment of a parametric
curve in the observation space S. Since a single token is
represented by S, the signature is represented by a collection
of matrices.

4.2 Feature selection

We started the design of the system from selecting a set of
signature features. Since we tried to minimize the set of
features, only the following features were considered

Token’s length understood as the number of token’s points
N.

Average values of observation components §; =
%Zszl si(k), j = 1,...,5, identical to the column
averages of S.

Standard deviations of observation components o; =
[2_<2 i_
5 =55 j=1,...,5

Trend coefficients, namely the slopes «; of trend lines of
each observation component. The trend lines are given by

s?(k) =%§j—ajkfor j=1,...,5, where
PjOj
O!j=
ok
RoEs
pi= 00k

_ 1 ¥
ks; = Nstj(k)
k=1

and o2 = C-T, % = INWN+D, 2= LNWN+1) (2N +1).
We found that the trend coefficients were practically equal
to zero for pen tip pressure and the angles, hence we always
set 3 = @4 = @s = 0 and only a; and @, were used as
features. In the remaining feature calculations we always
use “de-trended” coordinates s; =s;j— s(j)., Fig. 3.

Eigenvectors and eigenvalues of the inertia matrix. The iner-
tia matrix I' of two first coordinates sy, s, is identical to the
sample covariance matrix of these observation components,
namely

N T "

Tk *2
S5 5




The square roots of the eigenvalues 4; > A, of I' are used
as features.

Third central moments We also use the third central mo-
ments of 57, s; and s3 observations, namely

1 N
Brar =5 2, GIRY (5®) (s H0) @)
k=1

where p +qg+r =3, p,q,r = 0,1,2,3, which are related
to the symmetry of the curve in 3-dimensional observation
space. To keep a similar scale ratio for all features, we
will use the cube roots of the third central moments as the
features.
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Figure 3: A single x-y token with the trends removed. Two
orthogonal eigenvectors are also presented.

Note that of all the features introduced above, Tab. 1, only
the mean values §;, 5> and the standard deviations s; and
s» can be based on the observations of scanned tokens, i.e,
when no time-related observations are given. The remaining
features cannot be perceived from the x-y signature and will
thus be called hidden features.

4.3 Minimal set of features

The initial family of features, Tab. 1, was found quite suffi-
cient for the relatively small size of our signature database.
This family can be enlarged by including more detailed prop-
erties of signatures, and in particular, taking into account
the local properties of observation dynamics. On the other
hand, growing dimensionality of the feature space makes it
more difficult to train the classifying network. It is then
important to construct a family of features that is not re-
dundant, in such a way that the features are not dependent.
The initial family of features is redundant, since some fea-
tures are linearly dependent, as it may be seen from the
sample correlation matrix. Linear regression analysis pro-
vides algorithms to remove highly correlated elements from
a regression set and any of such methods can be adopted.

The final set of features was assumed to have the absolute
values of sample correlation coefficients not exceeding an
arbitrary correlation threshold set at 0.4. Since the choice
of “strongly correlated” features is not unique, we were in-
clined to remove those features which were more complex
to calculate. For instance, the correlation coeflicients be-
tween the eigenvalues of the inertia matrix and the standard
deviation of the corresponding observation components are
greater than 0.9, and we were apt to reject eigenvalues rather
than standard deviations. This procedure lowered the size of
the feature set to 12, Table 1. We did not use more sophisti-
cated methods to detect nonlinear dependencies, and this set
was used for both classification and verification purposes.

Table 1: Initial and final sets of signature features

Feature Initial set Final set
Token’s length N N
Averages Slyeee, S5 Slsee.s 85
Standard deviations | o, o oy, 02
Trend coefficients ay, as 0%}
Cube roots of third | VB300, VB210, | VB300
central moments ..oy VBoos vB120,
VBoi2

5 From features to classifying function

Mapped to the feature space, the distribution of tokens may
be quite uneven. Some tokens may be close to each other
even if they represent different signatures, and some other
may be quite apart. Since the classification function must
be approximated on the basis of feature vectors, this uneven
distribution may lead to poor approximation quality. It is
proposed here to approach this problem by performing a
cluster analysis in the feature space. In this way the feature
space can be divided into sub-regions of “similar” features,
with the definition of similarity properly defined. The clas-
sification function can be approximated separately in each
sub-region to assure smaller approximation error and thus
better classification and verification. We tested several clus-
tering methods and found that the best results were given
by an algorithm based on a hierarchical cluster tree, with
the distance (similarity) matrix based on the Mahalanobis
distance d(x,y) = (x — y)"C~'(x — y) where C denotes the
sample covariance matrix of the features. The tokens are
then organized into a binary hierarchical cluster tree which
is consecutively divided intro clusters.



Both classification and verification were carried out with the
use of neural networks. A two layer sigmoidal perceptron
network was built with outputs corresponding to particu-
lar signatures. The network was trained to approximate the
class membership function. After the training, the classifi-
cation decisions were based on the winning output neuron.
A special case of radial-basis function network, namely the
RCE network [10] was also tested.

6 Results

6.1 Signature classification

For classification purposes, all signatures were first divided
into six clusters. Neural classifiers were built separately for
each cluster data. The results of classification strongly de-
pend on the number of reference tokens representing each
signature in the network training, Tab. 2. In the actual iden-
tification and verification experiments we used from 4 up to
8 reference tokens per signature. The correct classification
ratio was equal to 95.8%.

Table 2: Classification quality vs. number of reference to-
kens. Nonlinear perceptron was trained for 1,2,3 and
4 reference tokens per one signature. Total number of
K = 48 signatures, 2K + 1 hidden neurons, K output
neurons.

# of reference classification
tokens per signature error
1 36.4 %
2 25.0%
3 16.7 %
4 12.5%

6.2 Signature verification

Here all signatures were divided on the base of visible fea-
tures into four groups. Verification was performed with the
use of hidden features only. We employed here both the
winning neuron output value O and the next highest value
0. For the hypothesis the token presented to the network’s
input is genuine not to be rejected, the network two highest
outputs had to fulfill the relations

1t
0V > m - S
VN -1 3)
09 < my + ot
N -1

where my;, denote the average values of the two outputs for
the network stimulated by all reference tokens for this sig-
nature, ¢ are the corresponding sample standard deviations

and N denotes the number of reference tokens for this sig-
nature. By 7 we denoted the upper a-quantile of Student’s
t distribution with N — 1 degrees of freedom ty_;, namely
P{|ty| > t} = @, calculated for the given significance level a.
This approach lead still to FAR=0% and FRR=22% showing
that the standard deviation was greatly underestimated due
to the small size of out database. We decided to replace the
to/ VN factor by a single number y derived experimentally.
The best results were obtained for y = 15, namely FAR=0%
and FRR=11.11%.

6.3 RCE network

The RCE network was tested in classification tasks, and
showed better generalization abilities than the sigmoidal
feedforward network, with correct classifications rate ap-
proaching 100%. On the other hand, this network failed
in verification tasks, resulting in the FAR=8.33% and
FRR=11.11%, much worse than for the perceptron.
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