# Improved Post-mortem Iris Recognition with DCNN-based Image Segmentation

### Mateusz Trokielewicz<sup>1</sup>, Adam Czajka<sup>2</sup>, Piotr Maciejewicz<sup>3</sup>

<sup>1</sup>Institute of Control and Computation Engineering Warsaw University of Technology, Warsaw, Poland

<sup>2</sup>Department of Computer Science and Engineering University of Notre Dame, USA

Department of Ophthalmology <sup>3</sup>Medical University of Warsaw, Poland

Biometrics and Machine Learning Group Seminar Dec 17, 2018

# Post-mortem iris recognition

Current state-of-the-art

- fairly well evaluated, efforts by two main groups: WUT-NASK/Notre Dame (Trokielewicz, Czajka, Maciejewicz) and ORNL (Bolme, Boehnen)
- Presentation Attack Detection (PAD) method proposed (Trokielewicz *et al.*, BTAS 2018)
- no methods improving post-mortem recognition accuracy
- post-mortem-specific segmentation method proposed, but without recognition pipeline integration

(Trokielewicz et al., IWBF 2018)

# Contributions

- an end-to-end iris localization and image segmentation model that can be used as a drop-in replacement for OSIRIS' segmentation (or any other method)
- experiments showing a considerable improvement in the performance of a hybrid method employing the proposed segmentation and iris encoding done with OSIRIS
- source codes and neural network models' weights
- a new dataset of cadaver iris images collected from 42 subjects over a time period of up to 369 hours post-mortem

# Databases of iris images

**Post-mortem datasets** 

### Training data:

- Warsaw-BioBase-Postmortem-Iris-v1.1, 574 near-infrared (NIR) and 1023 visible light (VIS) images from 17 cadavers over a period of up to 34 days (Trokielewicz *et al.*, BTAS 2016)
- Warsaw-BioBase-Postmortem-Iris-v2, an extension of v1.1, 626 NIR and 764 VIS images from 20 more subjects (Trokielewicz *et al.*, IEEE TIFS 2018)

### **Testing data:**

• Warsaw-BioBase-Postmortem-Iris-v3, a new set of images collected for this study, adding data from 40 subjects with 1094 NIR and 785 VIS images, over up to 369 hours

# Databases of iris images

Additional datasets for evaluation

### Challenging dataset:

• Warsaw-Disease-Iris-v1, collected mostly from elderly ophthalmology patients, including subjects with ophthalmic conditions (subset of 552 images of 77 eyes is used) (Trokielewicz *et al.*, CYBCONF 2015)

### Easy dataset:

 BioSec baseline corpus – a well-known iris image database containing data collected from healthy subjects (subset of 1200 NIR images of 150 eyes is used) (Fierrez et al., Pattern Recognition, 2007)

### Databases of iris images Selected samples



(a) Postmortem-Iris-v3 (b) [

(b) Disease-Iris-v1

(c) BioSec

# Baseline iris recognition method OSIRIS

### The method:

- open-source, developed within the BioSecure project (EU)
- follows the original Daugman concept

### **Recognition pipeline:**

- coarse iris segmentation with circular Hough transform and active contour refinement
- iris normalization onto a dimensionless polar coordinate rectangle
- filtering with Gabor wavelets at multiple scales (3)
- calculation of the binary iris code using phase quantization
- yields fractional Hamming distance as a dissimilarity metric

## Baseline iris recognition method OSIRIS

### The method:

- open-source, developed within the BioSecure project (EU)
- follows the original Daugman concept

### **Recognition pipeline:**

- coarse iris segmentation with circular Hough transform and active-contour-based refinement
- iris normalization onto a dimensionless polar coordinate rectangle
- filtering with Gabor wavelets at multiple scales (3)
- calculation of the binary iris code using phase quantization
- yields fractional Hamming distance as a dissimilarity metric

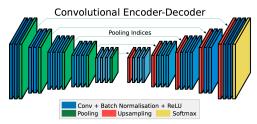
# Baseline iris recognition method OSIRIS

### Score normalization

- proposed by Daugman (IEEE TSMC paper, 2007)
- penalizes comparison scores based on small number of commonly unmasked bits
- typically shifts the ROC to the left and downwards

$$HD_{norm} = 0.5 - (0.5 - HD_{raw})\sqrt{\frac{n}{N}}$$

where:

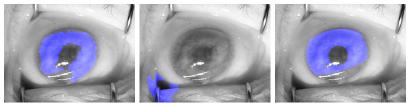

 $n-\operatorname{number}$  of bits that were available for comparison

N – typical number of bits compared between two irises, estimated for a particular database; here calculated separately for each experiment; max number of bits in OSIRIS code is 1536

# Data-driven segmentation models

### A starting point:

- Trokielewicz, Czajka, Maciejewicz (IWBF 2018)
  Data-Driven Segmentation of Post-mortem Iris Images
- trained and evaluated on Warsaw-Postmortem-v1 dataset, average IoU=86%, better than OSIRIS' IoU=78%




source: Badrinarayanan et al., "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation", IEEE Trans. Pattern Anal. Mach. Intell., 2017

# Data-driven segmentation models

### A starting point:

- Trokielewicz, Czajka, Maciejewicz (IWBF 2018)
  Data-Driven Segmentation of Post-mortem Iris Images
- trained and evaluated on Warsaw-Postmortem-v1 dataset, average IoU=86%, better than OSIRIS' IoU=78%



(a) DCNN-based

(b) OSIRIS

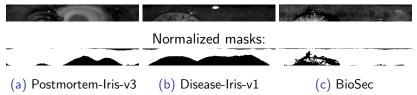
### (c) Ground truth

# Data-driven segmentation models

### Old model:

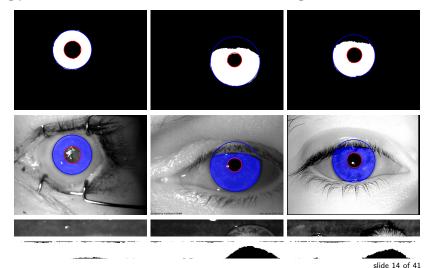
• *fine*: trained with data from the Postmortem-Iris-v1 database with **fine-grained ground truth masks** denoting only the clearly visible iris portions,  $120 \times 160$  predictions

### New models:


- *fine v2highres*, trained with data from Postmortem-Iris-v1 and NIR samples from Postmortem-Iris-v2 for twice as many epochs (120 vs 60), also with **fine-grained ground truth masks**,  $240 \times 320$  predictions
- **coarse** trained with both NIR and VIS data from v1 and v2 of the Postmortem-Iris for 120 epochs, but with **coarse ground truth masks**, denoting only the inner and outer iris boundary and eyelids,  $240 \times 320$  predictions

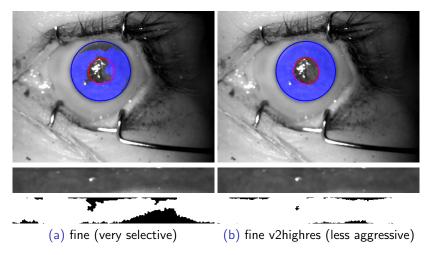
# **OSIRIS** segmentation and normalization

### Segmentation results (samples shown before):




### Normalized images:



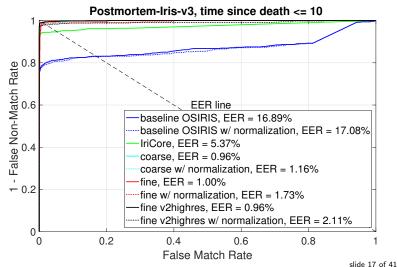

# **DCNN** segmentation and normalization

using predictions from the *coarse* model and circular Hough transform

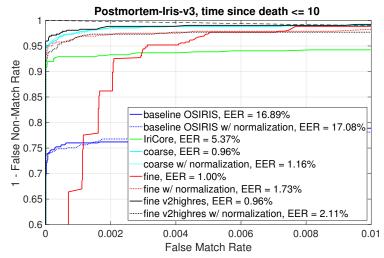


# **DCNN** segmentation and normalization

using circle params from the coarse and masks from fine models (post-mortem only)

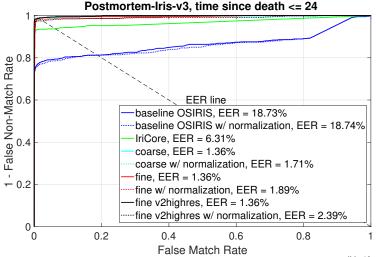



slide 15 of 41


# **Comparison score generation**

- baseline (unmodified) OSIRIS scores obtained for all possible genuine and impostor pairs for three test databases
- for post mortem data: segmentation results obtained from three DCNN models are injected into the OSIRIS pipeline
- for disease and healthy data: only the *coarse* model and the stock OSIRIS are evaluated
- **IriCore** commercial matcher employed as an additional method for comparison (undisclosed recognition methodology)
- chosen as best performing method in our previous post-mortem research

#### post-mortem irises



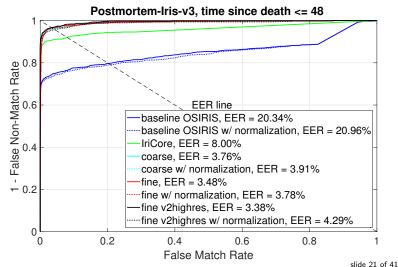

#### post-mortem irises



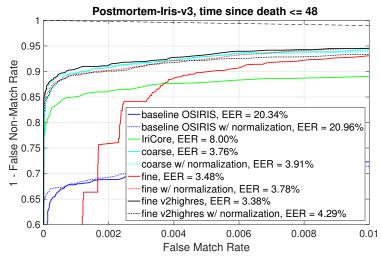

slide 18 of 41

#### post-mortem irises



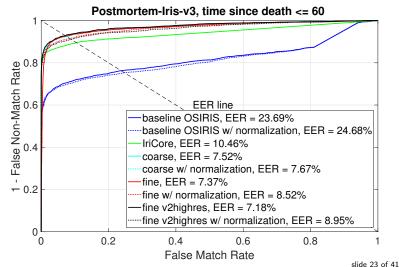

slide 19 of 41

#### post-mortem irises (close-up)

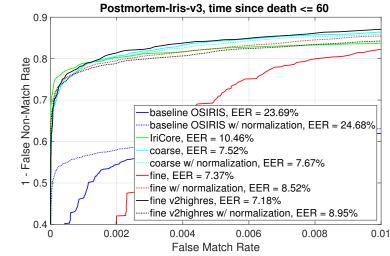



slide 20 of 41

#### post-mortem irises

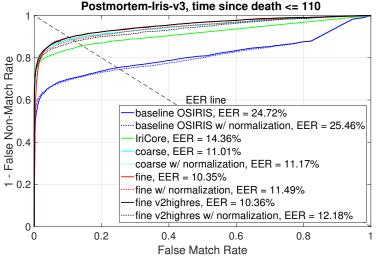



#### post-mortem irises (close-up)



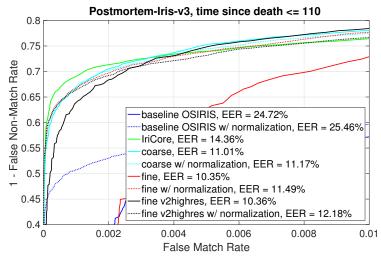

slide 22 of 41

#### post-mortem irises



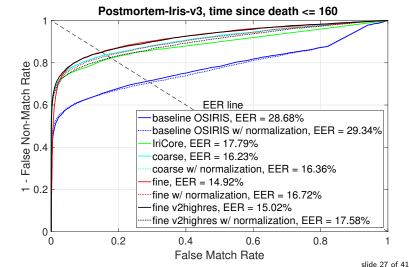

#### post-mortem irises (close-up)



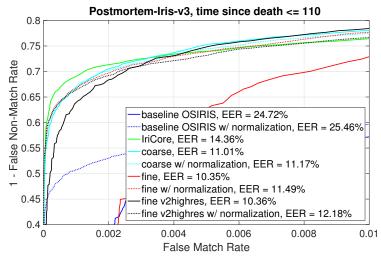

slide 24 of 41

#### post-mortem irises (close-up)



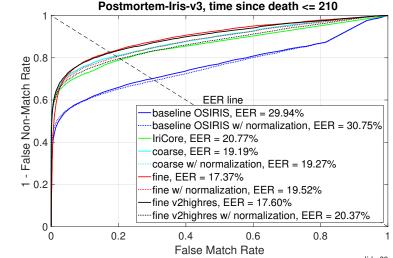

slide 25 of 41

#### post-mortem irises (close-up)



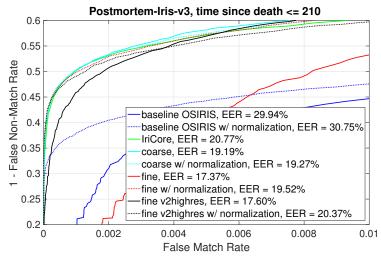

slide 26 of 41

#### post-mortem irises



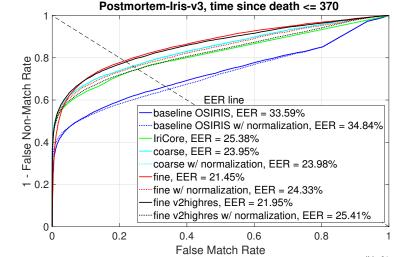

#### post-mortem irises (close-up)




slide 28 of 41

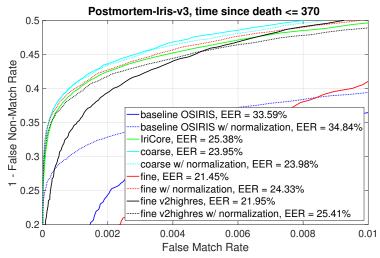
#### post-mortem irises




slide 29 of 41

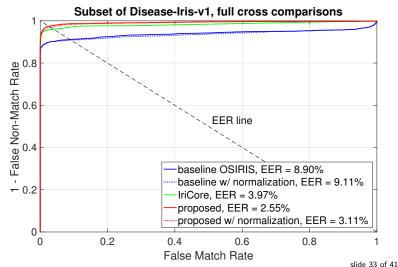
#### post-mortem irises (close-up)



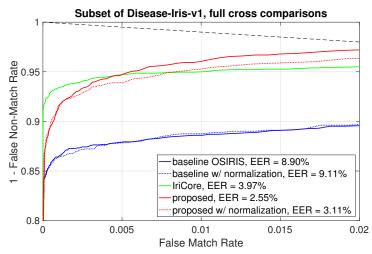

slide 30 of 41

#### post-mortem irises

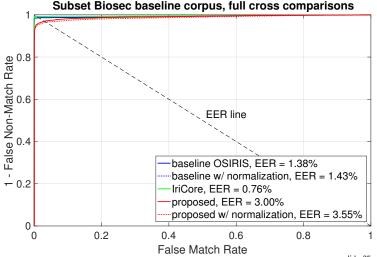



slide 31 of 41

#### post-mortem irises (close-up)

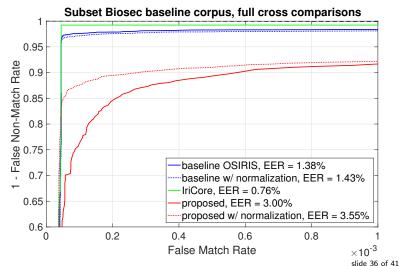



slide 32 of 41


#### elderly/disease-affected irises



elderly/disease-affected irises (close-up)




healthy irises



slide 35 of 41

#### healthy irises (close-up)



# Conclusions

Robust post-mortem iris recognition with DCNN-based image segmentation

- our solution achieves close-to-perfect recognition accuracy when samples collected less than 10 hours after death are considered, producing EER=1%
- as time progresses, the accuracy drops, but the proposed solution outperforms stock OSIRIS by at least 12% of EER
- on a challenging dataset of images collected from the elderly with ophthalmic conditions, the advantage is evident with EER=2.55% compared to 8.9% yielded by OSIRIS

### Paper intended for submission to:

 Image and Vision Computing Journal, Elsevier (JCR list, 35 points)

# Limitations

Robust post-mortem iris recognition with DCNN-based image segmentation

- small database size: only  $\approx$ 4000 images (train + test)
- for selected longer time post-mortem horizons the IriCore method may be better in low FMR (<0.001) registers
- but it's difficult to generalize on such a small dataset
- requires further tuning for healthy data
  - · re-training the segmentation model with healthy iris datasets
  - Hough transform part
- remaining TODO: domain (post-mortem) specific iris filtering

# Reproducibility

### Together with the paper come the following:

- source codes of iris localization and image segmentation method that can serve as a **drop-in replacement for any method employing iris normalization**
- additional three DCNN models for image segmentation
- new, previously unpublished dataset of post-mortem iris images: Warsaw-BioBase-Postmortem-Iris-v3

These are available to interested researchers for non-commercial purposes: http://zbum.ia.pw.edu.pl/EN/node/46 (following paper acceptance)

# Improved Post-mortem Iris Recognition with DCNN-based Image Segmentation

### Mateusz Trokielewicz<sup>1</sup>, Adam Czajka<sup>2</sup>, Piotr Maciejewicz<sup>3</sup>

<sup>1</sup>Institute of Control and Computation Engineering Warsaw University of Technology, Warsaw, Poland

<sup>2</sup>Department of Computer Science and Engineering University of Notre Dame, USA

Department of Ophthalmology <sup>3</sup>Medical University of Warsaw, Poland

Biometrics and Machine Learning Group Seminar Dec 17, 2018